
Linux Kernel Exploitation For
Beginners

What?

● A kernel is a core component of an operating system.

● Responsible for managing system resources (Processes, Memory, Storage, etc…)

● Handles all interactions between software and hardware.

● Provides security and isolation (Permission management, memory isolation, process isolation)

Why?

● Kernel runs in a privileged context.

● Large attack surface (modules, drivers, syscalls, subsystems)

● Helps to develop practical understanding of OS internals

● Linux is widely used (servers, embedded devices, appliances, phones, etc…)

Why CTF?

● Reduced complexity (limited background processes, predictable memory state)

● Certain barriers to entry are lowered (pre-compiled kernel image, filesystem, source code)

● Often less focus on vuln, more on exploitation strategy

● Customizable (increase difficulty, add/remove mitigations, limit primitives)

Challenge Structure

● Kernel CTF challenges typically include a compressed kernel image, a compressed filesystem, a

qemu cli script, and source code for vulnerability (often a module).

Initial Recon

● Decompressing and exploring the file system

System Init Files
● Initramfs uses /init as the first userspace script to be

executed after the filesystem is mounted.

● Other startup scripts may be helpful/necessary

Source Code Analysis

● Main functionality consists of New, Delete, Edit,
and Show commands.

● Controllable heap allocations/deallocations

● Kernel-specific functions (copy-from/to-user,
kzalloc, kfree)

Vulnerability Analysis

● No Size Checks on Edit or Show commands

● Size variable is user controlled

● Provides OOB heap read and write primitives

● Flexible heap cache placement

Kernel Module Interaction

● Kernel module specific structures and functions
○ file_operations
○ module_init
○ module_exit

● Character device registered will serve as ‘file’ interface for
userspace interaction

● IOCTL function registered to pass data and commands
between user and kernel space

Initial PoC

● Open handle to /dev/buffer

● Allocate two buffer objects of the same size

● Write explicit values to each buffer to serve as
markers/indicators

● Prove OOB read by leaking the explicit value of
buffer 2 by reading past the bounds of buffer 1

Debugging Workflow - Challenge Specific
● Modify QEMU CLI command to allow remote debugging

● Add file system compression routine to QEMU script

● Disable KASLR via QEMU CLI arguments

● Adjust startup script to boot into root shell

● Disable KPTR restrict to reveal Kernel symbols through
/proc/kallsyms

Debugging Workflow - GDB/GEF

● GDB - GNU Debugger

● GEF (GDB Enhanced Features) provides extended features
specifically for exploit development and reverse engineering

● Bata24 Fork of GEF is actively maintained and provides kernel
specific commands
○ kmalloc tracing
○ Kernel symbol application
○ SLUB/SLAB inspection
○ Pagewalking

Debugging Workflow/PoC Demonstration

Target Selection

● Linux kernel provides a number of useful targets for exploitation

● Commonalities between targets
○ function tables/function pointers
○ fixed pointers for leaks
○ r/w or copy mechanisms
○ direct or indirect allocations from userspace

● Challenge hint #1 - /dev/pts and /dev/ptmx file permissions

tty_struct overview

● Can be allocated by opening /dev/ptmx

● Size is 0x2e0 which resides in kmalloc-1024

● Kernel and heap leaks can be achieved through various fields

(ops, dev, driver)

● Magic value serves as indication of object in memory

● Redirect execution through use of forged ops structure

(function table)

Initial Exploit Strategy (Naive)

● Allocate buffer object in same cache as tty_struct (kmalloc-1024)

● Allocate tty_struct by opening /dev/ptmx

● Use OOB read to leak tty_struct and validate adjacency

● Create fake tty_operations function table within buffer object

● Overwrite tty_struct->tty_operations to point to fake function table

within buffer through OOB write primitive

● Trigger one of the tty_operations associated with tty_struct

allocation.

● Profit?

Leaking Pointers

● OOB Read primitive can be used to leak data

● 3 types of leaks necessary
○ tty_struct leak to prevent clobbering necessary values

○ Heap leak to determine location of buffer object

○ Kernel leak to determine offsets for ROP gadgets

● tty_struct is a strong target that provides all 3 types of

leak required

Leaking Pointers (Heap)

● Slub-dump GEF command can help determine heap

location.

● Heap pointers included in this leak are offsets within the

tty_struct object (0x38 and 0x48)

● kmalloc-tracer can be used to validate this objects’ heap

location

Leaking Pointers (Kernel function)

● Determine general memory area for kernel function
pointers through /proc/kallsyms

● Validate specific leaked address against kallsyms

● Leaked kernel function pointers can be used to calculate
offsets to other functions and gadgets

SMEP/SMAP Mitigation

● Prior to SMEP/SMAP, ret2usr style attacks were easily
permitted

● SMEP prevents execution from userspace pages from
kernel context

● SMAP prevents reads/writes to userspace pages from
kernel context

SMEP/SMAP Bypass - Kernel ROP

● ROP (Return Oriented Programming) is a exploitation
method of redirecting execution by chaining together
snippets of code (gadgets) that exist within the program’s
memory to achieve desired functionality

● Each ROP gadget will end in a return instruction

● RET will pop an 8-byte value into the RIP register, increment
the stack pointer (RSP) by 8-bytes, then continue to the
next instruction pointed to by RIP

Initial ROP Strategy

● Escalate process privileges through standard kernel mechanisms
○ prepare_kernel_cred

○ commit_creds

● Return to userspace context using gadgets
○ swapgs instruction

○ iret instruction

● Execute shell from userspace
○ execve /bin/sh

Stack Pivot

● Our tty_struct primitive will allow us to redirect execution to
an arbitrary location, however we need to construct our ROP
chain on the process stack based on how ROP functions.

● In this circumstance it is possible to adjust the location of the
stack using a ROP gadget, this technique is called a ‘stack
pivot’’

● ROP Chain must account for additional ‘pop’ instructions

ROP - Finding Gadgets

● Multiple tools/methods for finding gadgets
○ Ropper

○ ROPGadget

○ Manually?

● Extract compressed kernel image (BzImage) to

run ROP gadget tools against

● Gadgets can be output to text file and

searched in order to construct chain.

ROP - Constructing a Chain

● Understanding calling convention is important
○ Function arguments
○ Register usage

● Some assembly knowledge required

● Follow outline

● Get Creative (dealing with additional instructions and
junk data)

Updated ROP Strategy

KPTI Mitigation
● KPTI stands for Kernel Page Table Isolation

● Keeps separate page tables for user and kernel space

● Implemented originally as a mitigation for meltdown vulnerability
which allowed for leaking kernel memory from user space

● Makes use of the CR3 register to store the root page table

● Switching between user and kernel space now requires the CR3
register to be updated

KPTI Bypass
● KPTI Trampoline makes use of the standard function used to

switch between kernel and user space

● Swapgs_restore_regs_and_return_to_user_mode is the
responsible function for this process

● Combines the needed CR3 switch with the swapgs and iret
instructions from our existing ROP chain

● ROP into offset of function to avoid dealing with additional
instructions

Final ROP Strategy

Full Chain Exploit Strategy

● Allocate a vulnerable buffer object in the kmalloc-1024 cache

● Allocate a tty_struct object in the same cache by opening /dev/ptmx

● Trigger OOB read vulnerability to leak tty_struct values and confirm object adjacency

● Trigger OOB write vulnerability to populate buffer object with forged values
○ Function table containing pointers to our stack pivot gadget
○ Fake ‘stack’ containing remaining ROP chain

Resources

● Linux Kernel Exploitation (articles, books, tools, CTF) - https://github.com/xairy/linux-kernel-exploitation

● Linux Kernel CTF challenges and writeups - https://github.com/smallkirby/kernelpwn

● Bata24 GEF Fork - https://github.com/bata24/gef

● ROPGadget Tool - https://github.com/JonathanSalwan/ROPgadget

https://github.com/xairy/linux-kernel-exploitation
https://github.com/smallkirby/kernelpwn
https://github.com/bata24/gef
https://github.com/JonathanSalwan/ROPgadget

