
Look Ma! No IDA

Malware analysis without
reverse engineering

Whoami?

● Previous experience
○ Web app vulnerability assessment
○ Binary analysis research
○ Android forensic
○ Prototype dev in Python, C, C++

● Author of Open Security Training IDA
Debugging mini class

● Creator of multiple intro to reverse
engineering workshops for HS STEM and
Women's Society of Cyberjutsu (WSC)

● Low level systems internals nerd

Christina Johns
Principal Malware Analyst
Red Canary

@bitmaize.bsky.social

Agenda

1. Introduction

2. Why not RE

3. Where to start

4. Specific tools and malware examples

5. Key takeaways

Introduction

So you want to be a malware analyst

Common recommendations:

● C/C++ coding
● Operating system internals
● Computer architecture
● Assembly Code

This is really great advice… for learning
reverse engineering

Malware analysis != reverse engineering

Malware analysis

Reverse engineering

Malware
reverse

engineering

Backwards
compatibility

Vulnerability analysis

● Static analysis
tools

● Sandbox
● YARA matches

● Backwards
compatibility

● Vulnerability
analysis

Why not start with
reverse engineering?

Goals for malware analysis vary

Is this something that already has a name?

Is it malicious?

IOC extraction

Estimate of capabilities

Tell me everything it could possibly do

Most of these things don't necessarily require reverse engineering

✔

✔

✔

✔

✔

Ways to accomplish these goals

IOCs
● Sandbox
● Config

extractors
● Static analysis

tools

Capability
estimation
● Sandbox ATT&CK

mappings
● Static analysis

tools

Family
identification
● Overlaps in

IOC/capability
data

● File metadata
overlaps

Beyond reverse engineering

Focus

Need to know
what you are
looking for in the
binary

Variety

Not all malware
is compiled code

Efficiency

Tools can assist
with IOCs, family
identification
and an estimate
of capabilities

Programming languages associated with
Red Canary's top 10 threats

1. SocGholish (JavaScript)
2. Impacket (PowerShell)
3. Scarlet Goldfinch (JavaScript)
4. Mimikatz (C)
5. Amber Albatross (C++\PowerShell\Python)
6. LummaC2 (C)
7. NetSupport Manager (C\C++)
8. GootLoader (JavaScript)
9. Gamarue (C\C++)

10. HijackLoader (C\C++)

Half of our top ten threats use non-compiled languages

Where to start
instead

TTPs achieved through
code

Core skills

Programming language used by malware

File properties

Tools that automate malware analysis

Forensic view of malicious
code execution

Tool proficiency

● What tools will give you what information
○ Static analysis
○ Dynamic analysis

● Limitations of the analysis tools

Programming languages

● Popular languages (other than C/C++)
○ JavaScript
○ PowerShell
○ C#/Visual Basic

console.log("Hello, World!");

public class HelloWorld {
public static void Main(string[] args) {

 Console.WriteLine("Hello, World!");
} }

Write-Host "Hello, World!"

File properties

● Signer information
● PE file format

○ Specifies structure of Microsoft executables
○ Metadata can be useful in analyzing malware
○ If you go on to learn RE, adversaries abuse the PE format for

anti-analysis

Building on endpoint log knowledge

Starting skill: EDR Telemetry

1. Sandbox data
2. Build out to other data available in the sandbox
3. Open-source malware or C2 frameworks on Github
4. Write own code
5. Write a YARA rule to catch your sample code

Building on adversary tracking

Starting skill: Clustering activity based on overlapping TTPs

1. Dive into PE file format
2. Apply file properties for clustering
3. Examine network data from sandbox

Tools and malware
analysis

Tools/Resources

● Github
● Malware databases
● Sandboxes
● FLAREVM

○ YARA
○ Targeted static analysis tools
○ CyberChef

● Assemblyline
● Wireshark

GitHub

● Why try to reverse engineer
when you can read the
source?

● Adversaries are happy to use
open-source software

● Overlaps can be found by
searching for strings in
GitHub

Malware DBs

VirusTotal

● Signer information
● Name overlaps
● File information
● Behavior information and

content searching

MalwareBazaar

● Basic file info
● Links to sandbox reports
● YARA rule hits
● Tagged with malware family

Public sandboxes

● Look up hashes
● Digging through sandbox

data is a lot like EDR telemetry
● PCAP

Limitations

● Sandbox detection
● Command line arguments
● Command and control input

Sandboxes

● Any.run
● Tria.ge
● Joe Sandbox
● CAPE
● Hybrid Analysis

YARA/YARA-X

● Pattern matching tool
● Use open-source rules
● Write rules to identify

malware
○ Family
○ Behavior

● Based on strings, code hex,
PE characteristics

Static Analysis

● Detect it easy
● PEstudio/CFFExplorer
● FLOSS and String Sifter
● capa

CyberChef

● Can create recipes to
deobfuscate scripts

https://github.com/mattnotmax/cyberchef-recipes

Recipe resource

Assemblyline

● Canadian Centre for Cyber
Security (CCCS)

● Open-source
● ALL the plugins! ALL the power!
● Deobfuscate JS
● Parse email files
● Recursively unzip
● Can configure to connect with

CAPE for dynamic analysis
● YARA service
● Malware configuration extractors

Scripting languages

● IDE for the language
● Reverse engineering

○ Breakpoints in debugger
○ Refactor variables as you go

Malware case studies

Case study # 1

Background: You come across node.exe executing a mess of JavaScript

Case study # 1

Assemblyline results

Case study # 1
Before After

Before

After

Case study # 1 results

● IOCs
● Capabilities

○ Some
● Need more info?

○ Script is now easier to read

You have analyzed this malware!

Case study # 2

MD5: 2f93a7e61bd8eb8b595fd67c130edbc2

Case study # 2

MalwareBazaar Joe Sandbox

Case study # 2

Assemblyline

Case study # 2

● Gemini (or your favorite LLM)
● Helpful to guide your efforts
● Confirm its assertions

Case study # 2 results

● IOCs
● Capabilities

○ Sort of, not sure what the PowerShell does
● Need more info?

○ Can focus on remaining questions

Case study # 3

MD5: a81d92ab003b6055e313a577ccdbf134

Case study # 3

Detect It Easy

Case study # 3

capa

Case study # 3

Sandbox

Case study # 3

● YARA
● Open-source rules

○ https://github.com/jeFF0Falltrades/rat_king_parser/tree/master

Case study # 3

DNSpy

Case study # 3 results

● IOCs
● Capabilities

○ High level from capa
○ Details from VMRay
○ Github

● Need more info?
○ Read the code

The fine print

● Yes there will be malware that tools don't work on
○ If you are interested in diving down the reverse engineering

rabbit hole...
1. Learn C
2. Learn assembly
3. Learn computer architecture/OS internals
4. Learn a disassembler

● When to grab the disassembler (assuming you have the time)
○ There is anti-analysis thwarting your tools
○ Attribution based on software design, obfuscation algorithms
○ Need to understand command and control

https://ost2.fyi is a great resource for free assembly, architecture and reverse engineering classes

https://ost2.fyi

You can start analyzing malware before you learn to
reverse engineer

Summary

Build out from the expertise you already have

Develop a reverse engineering methodology on an
easier language

Cite your analysis sources tools can make mistakes

Questions?
Come see us on the showfloor!

