
Heap Exploitation From First
Principles

whoami

● Kevin Massey

● Security Analyst

● Bluesky - @hyp.bsky.social

● Twitter - @Scratchadams118

● Github - https://github.com/scratchadams/

https://github.com/scratchadams/

What is the heap?

● Area of memory used by a process for dynamic allocation at runtime.

● Heap memory can typically be accessed globally by the process.

● An allocator provides a layer between the process and the OS kernel to manage, request, and return

memory.

● Different types of heap management strategies exist. i.e - freelist-based, BiBOP, separated

metadata, inline metadata

Examples of heap allocators

● ptmalloc2 (GLIBC implementation)

● jemalloc (FreeBSD, Firefox, Android)

● PartitionAlloc (Chrome)

● Custom Allocators (Exim MTA)

Why build your own?

● Modern implementations are complex (optimizations, mitigations, corner cases)

● Understand how features are implemented can help identify where problems exist in other allocators

● Historical context can yield results

● It’s fun!

Allocating Chunks

mmalloc() chunk header

size — this field is used to store the size of the allocated chunk of
memory (this does not include the header)

next — this field is used to store a pointer to the next allocated
chunk of memory which creates a linked list that is used by the
mmalloc() function to enumerate through allocated chunks. This
field will be NULL for the last allocated chunk, indicating the end
of the linked list.

free — this field is used to determine if a chunk has been freed. If
it is set to 0, then the chunk is in use and otherwise the chunk is
free to be re-used by mmalloc().

magic — this is used for debugging and troubleshooting
purposes, unnecessary for the actual functionality of mmalloc().

First Call to mmalloc()

● The first call to mmalloc evaluates global_base
which acts as a list head to the linked list of allocated

chunks.

● If the list head is not set, a call is made to req_space.

● After validation, global_base is set to the return

value of req_space.

req_space() internals

● req_space acts as a wrapper for sbrk which is

used to request space from the OS kernel.

● sbrk is called twice, once with a zero value

parameter and once with our requested size

plus the size of our header.

● The return values of sbrk are validated, the

header fields are set to their appropriate

values, and a pointer to the newly allocated

chunk is returned.

Subsequent calls to mmalloc()

● Subsequent calls to mmalloc will follow this code path.

● The last pointer is set to global_base and then passed along to

find_free_chunk

● The return value of find_free_chunk will determine if an

existing free chunk can be reused or if we need to make another

call to the kernel to satisfy the allocation.

● If a existing free chunk is returned for use, we set the free and

magic fields of that chunk’s header accordingly.

find_free_chunk() internals

● Starting at the head of the list,

find_free_chunk iterates through our list

of allocated chunks.

● If a chunk that has it’s free field set and its

size field is greater than or equal to the

requested size, the loop ends and the

chunk is returned for re-use.

● If the loop iterates through the list of

chunks and the evaluation is not satisfied,

then a NULL value will be returned.

mmalloc() in use

Freeing and Reusing Chunks

mfree() internals

● Validate chunk pointer

● Call to get_chunk_ptr will return

start of chunk from useable

memory area.

● Set free and magic fields

accordingly

Vulnerability & Exploitation

Freelists/Bins

What is a bin?

● Linked lists of freed memory chunks.

● Allow for quick and efficient reallocation.

● Multiple bins are often implemented to deal with allocations

that fit certain size and size ranges.

● Typically implemented as singly or doubly linked lists

depending on the functionality of the allocator.

Bins in mmalloc()

● 8 fast bins which are implemented as an 8-element array and 1 sorted bin.

● Fast bins handle fixed-sized allocations up to 64 bytes. Every allocation below 64 bytes will be

rounded up to the nearest multiple of 8. (8, 16, 24, 32, 40, 48, 56, 64)

● The sorted bin handles any chunks greater than 64 bytes and sorts those chunks from smallest

to largest when added.

● Retaining an 8-byte alignment for all allocations also allows for additional encoding to occur in

the last 3 bits of our size field.

New chunk header

● prev_size - used to depict the size of the previous adjacent

chunk in memory.

● size - holds the size of useable memory associated with this

chunk.

● fd - this field is essentially the next field from our previous

header and holds a pointer to the next free chunk in the linked

list.

● bk - similar to the fd field, bk holds a pointer to the previous

free chunk on the linked list.

Saving space - free vs. allocated chunks

Comparing bins

● Fastbins store fixed size allocations and therefore do not

require sorting.

● Fastbins function as a stack (LIFO) where free chunks can be

pushed and popped from the top.

● Sorted bins are implemented as doubly linked lists which allows

for searching and sorting to take place.

mfree() for fastbin additions

● Evaluate request size and choose
corresponding bin function

● Check the appropriate fastbin for existing
entries

● If an entry exists, the new chunk is set to the
head and the fd field is updated to point to the
previous list head

● If no entries exist, the new chunk is set to the
head and the fd field is set to NULL

mfree() for sorted bin additions

● Iterate through the sorted bin.

● If an existing chunk with a size greater than or

equal to our chunk we are interesting, check if

it is the current list head.

● If encountered check passes the previous

checks, our newly added chunk is set to the

head of the list.

● If the size check passes and the bk field is set,

perform an insertion into the sorted bin.

Chunk reuse in mmalloc()

● Fastbin corresponding to requested size is evaluated

for available chunks.

● This check effectively evaluates both size and

existence of free chunk.

● If fastbin check fails, the sorted bin is evaluated and if

it has members, reuse_chunk is called to evaluate and

return an applicable chunk from the sorted bin.

● If both checks fail, or reuse_chunk is unable to find a

suitable chunk, req_space is called to create a new

chunk.

Fastbin removal

● Check if fastbin is populated

● Check fd pointer of chunk at the head of the list.

● If the fd field is not NULL, assign that value to the head of the

list and return the current chunk for reuse.

● If the fd field is set to NULL, set the head of the list to NULL

(effectively emptying the list) and return the current chunk for

reuse.

Sorted bin removal

● Enumerate through list until a chunk that satisfies the

allocation is encountered.

● If a suitable chunk is found, evaluate the fd and bk pointers of

that chunk to determine where it exists in the list.

● If fd and bk are not NULL, this means the chunk is somewhere

in the middle of the list.

● If fd is set and bk is NULL, the chunk is at the head of the list.

● If fd is NULL and bk is set, the chunk is at the end of the list.

Fastbin attack (UaF)

● Take advantage of a Use after Free vulnerability to overwrite

the fd pointer of a freed chunk with our target address.

● Allocate two chunks of the same size so that the overwritten fd
pointer is eventually returned as a useable chunk.

● Write the address of our bad_print function to the chunk to

successfully overwrite the target.

Arenas

Arena Structure

● An arena is a structure used to store the state of a program’s

heap.

● Consists of bin pointers, a pointer to our top chunk, and a

pointer to the next arena.

● Allocators typically allow for multiple arenas to prevent heap

contention.

Top chunk allocation

● Large default sized allocation on heap initialization.

● Subsequent requests should split chunks from the

existing top chunk.

● Top chunk can be extended when it runs out of

space.

● More efficient allocation strategy as it requires

fewer calls to the kernel.

Top chunk initialization

● Similar behavior to req_space in previous implementations.

● Default size of 32000 bytes is used for initialization.

● size field of top chunk is set to the default size minus

ALLOC_SZ which represents the size of our chunk header.

● fd pointer set to NULL as we will only implement a single arena

at this stage.

Splitting the top chunk

● Chunk pointer is created and set to the address of our top

chunk and the size field is set to our requested size.

● The top pointer is then increased by the requested size plus the

size of our header, effectively moving the location of our top

chunk past the new allocation.

● The size field of the top chunk is reduced by the requested size

plus the header size.

● Finally we initialize the fd field to NULL and return the split

chunk.

Extending the heap

● Request space from the kernel.

● Validate request and increase the size field of the top chunk by

requested size.

● Our implementation only extends the heap by the requested

size passed to mmalloc, but similarly to the initialization a

larger default value can be used here to make the process more

efficient.

Allocation in action

House of Force(ish) attack

● Overwrite the size field of the top chunk to artificially increase its size.

● Identify target function to overwrite, in this case a member of the GOT that will be executed after our

overwrite.

● Determine distance between top chunk and our target.

● Perform subsequent allocations until we return the location of memory that corresponds to our target.

Target

● The global offset table holds addresses of functions that are

dynamically linked.

● The actual memory address of a GOT function is mapped by the

dynamic linker when that function is used.

● Addresses in the GOT are good targets as they are writeable.

● Need to pick a target where the previous entry can be

overwritten to an arbitrary value due to the behavior of

split_topchunk setting the size field.

Overflow

Calculate distance from target

Overwrite

● Validate functest variable aligns with our target as expected.

● Write address of another function to functest. We will use

print_top to demonstrate.

● Make another call to memset which should now be overwritten

and execute print_top instead.

Conclusion

Resources

● https://medium.com/@kevin.massey1189/everything-in-its-right-place-20aacd17fe3f

● https://medium.com/@kevin.massey1189/everything-in-its-right-place-8926fe1a755a

● https://medium.com/@kevin.massey1189/everything-in-its-right-place-pt-3-f1c5efb2814d

● https://github.com/scratchadams/mmalloc

● https://github.com/scratchadams/Heap-Resources

https://medium.com/@kevin.massey1189/everything-in-its-right-place-20aacd17fe3f
https://medium.com/@kevin.massey1189/everything-in-its-right-place-8926fe1a755a
https://medium.com/@kevin.massey1189/everything-in-its-right-place-pt-3-f1c5efb2814d
https://github.com/scratchadams/mmalloc
https://github.com/scratchadams/Heap-Resources

Thank you!

