

The Impact of Quantum Technology on Cybersecurity

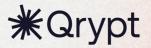
RVAsec

June 2023

₩Qrypt

Confidential Proprietary Information Subject to Confidentiality Statement

Denis Mandich


CTO and Co-founder of Qrypt Founding member of the Quantum Economic Development Consortium (QED-C) Industry Advisory Board – Center for Quantum Technology Founding member of the Mid-Atlantic Quantum Alliance (MQA) ANSI Accredited Standards Committee X9 ITU Telecommunications Standardization Sector (ITU-T) Forbes Technology Council Former Quside board member 20-year USIC veteran Physicist

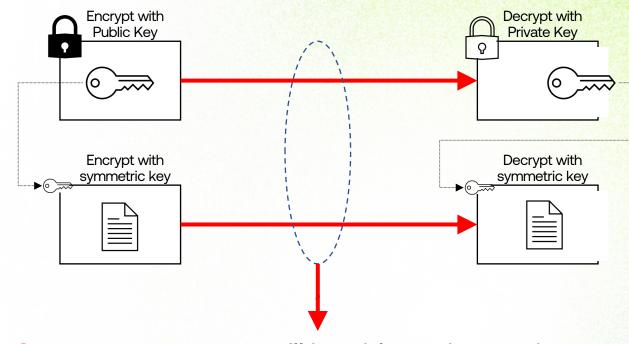
Cryptography Basics

- Cryptography is the use of codes to secure communications over an insecure medium
- Must provide Secrecy and Authenticity even when the adversary <u>controls</u> the channel
- Security proofs depend on the secrecy of a randomly generated key which may be shorter or longer than the message.

Brief History of Cryptography – "How we got here"

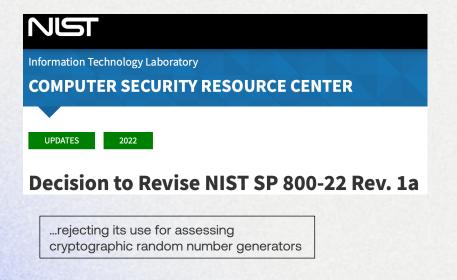
- Caesar cipher, Vernam, 1970s to today
- Asymmetric/Symmetric
- Information theoretic secure/computationally theoretic secure
- Quantum-safe/quantum-secure difference
- Suite A/Suite B/CNSA
- No "security through obscurity" publish everything

Suite A


Suite B

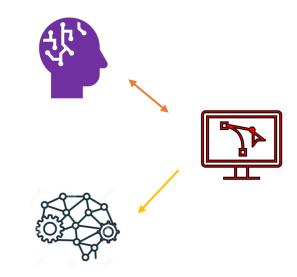
Public-Private key pairs are used to exchange symmetric keys to both encrypt and decrypt data:

Quantum computers will be able to decrypt key transmission, which makes encrypted data accessible.


Public Key Infrastructure, E2E

- The internet is fragile as are all apps for banking, privacy, health records, govt, etc
- PKI was never completed and continues to grow in complexity and management challenges
- Zoom, Yubikey examples; FedRamp, FIPs certifications

Yubico to replace vulnerable YubiKey FIPS security keys Volto staff discovers bug in YubiKey FIPS Series keys: offers replacements for affected outshmas.


Where is encryption used?

- Bank transactions, ATMs, https, e-commerce, PCI
- Cryptocurrency, digital wallets and assets
- Cloud infrastructure, virtual networks
- Ubiquitous, always-on systems and sensor networks

Where are the greatest threats?

- Integrity of automated and interconnected systems
- Trust in the financial industry and data exchanges
- Security of deposits, trading strategies, M&A
- Risk to operational AI and ML infrastructure

Persistence of classical vulnerabilities

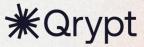
SIKE – NIST PQC Finalist

- Broken by a 2010 desktop computer with a Xeon processor
- What if this wasn't discovered for 5-10 years after implementation?

Intel SGX enclaves – the encryption keys to the kingdom

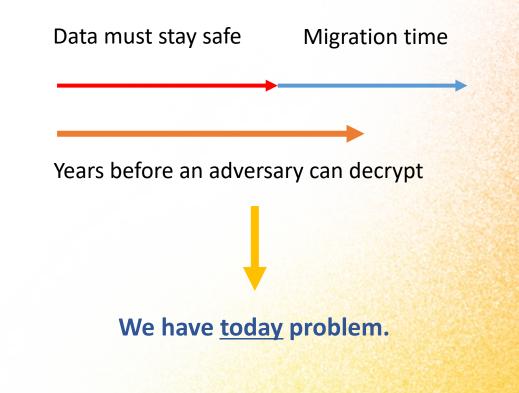
- Cornerstone of a trusted execution environment, even when the operating system is compromised
- Multiple types of flaws discovered over four years, new CacheOut attack

SHA-1, Dual_EC_DRBG, Heartbleed, Spectre, Meltdown, PacMan...



"Harvest now, decrypt later"

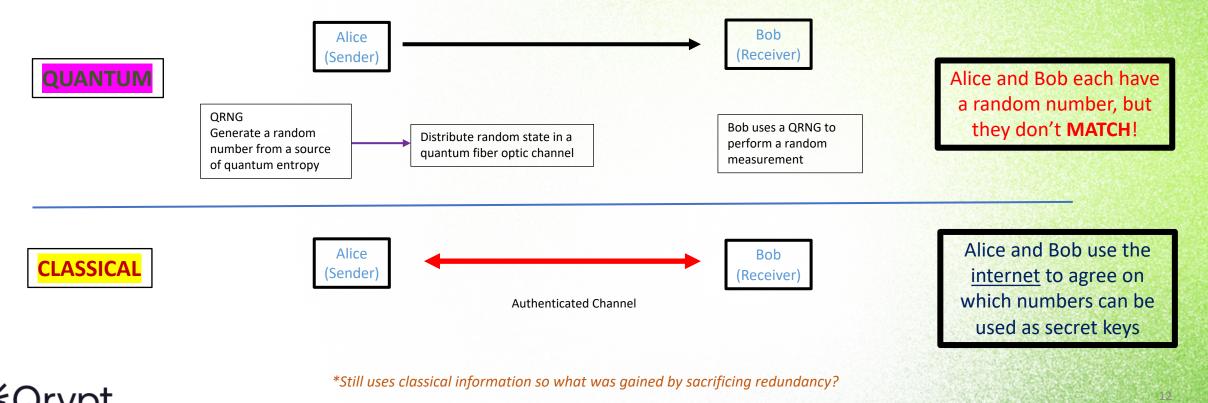
- Venona project, China today, low/no cost for storing, high potential benefit
- Real world examples, Rosenbergs, IoT
- Change in data theft priorities, targeting strongly encrypted data



When quantum is here, it will be too late. Your data is ready for decryption.

Harvest Now, Decrypt Later means adversaries are storing your encrypted data <u>today</u>.

Waiting for NIST PQC algorithms isn't enough.


- All of today's stolen data can be decrypted when Y2Q hits
- If/when future PQC algorithms fail, that data will also be vulnerable

What makes cryptography quantum?

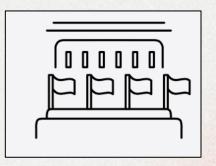
- Keys must be generated from a source of quantum entropy, not electronic noise
- Identical quantum keys must reach multiple endpoints to be useful
- SneakerNet, DI-QKD, BB84, E91 all rely on inescapable classical assumptions
- NSA affirmed <u>rejection</u> of **QKD**:

The core issues with QKD and variants:

- Trusted node network until we have reliable and scalable quantum repeaters and quantum memory
- Expensive physics appliances at the endpoints still need to get keys to clients (iPhones, laptops, etc)
- Centralized point of attack and failure for denial-of-service, accidents (shovels and backhoes!)
- Requires authenticated classical channels so what's the point? Just use PQC instead?
- repeatedly stated their position: "It's a HARD NO!"

The "must-haves" in quantum cryptography to make it commercially viable and deployable:

- QRNGs to make random numbers/states [SOLVED]
- Redundancy and decentralization must be resilient, no single point of failure
- Leverage existing massive global communications infrastructure (not physical security)
- Accessible by any classical device endpoint, not just datacenter-datacenter



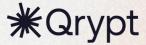
What is the best solution?

• Pre-shared key, OTPs, quantum keys, send data in the clear with no risk

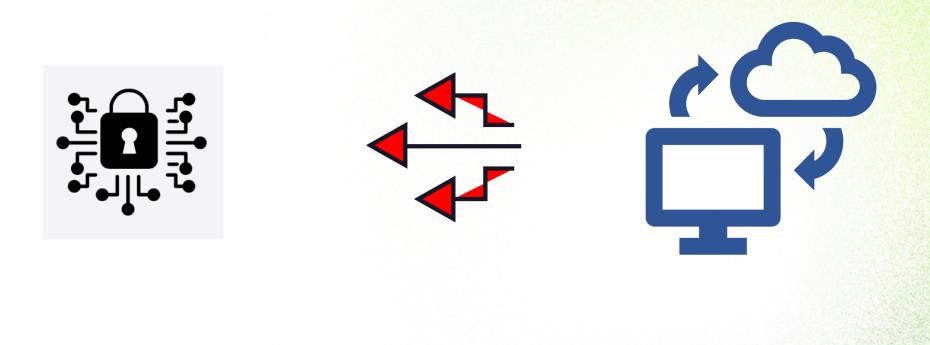
() 16 April 2014

- Random number generator stations example during the cold war
- Embassies communication over adversarial controlled comms

The spooky world of the 'numbers stations'

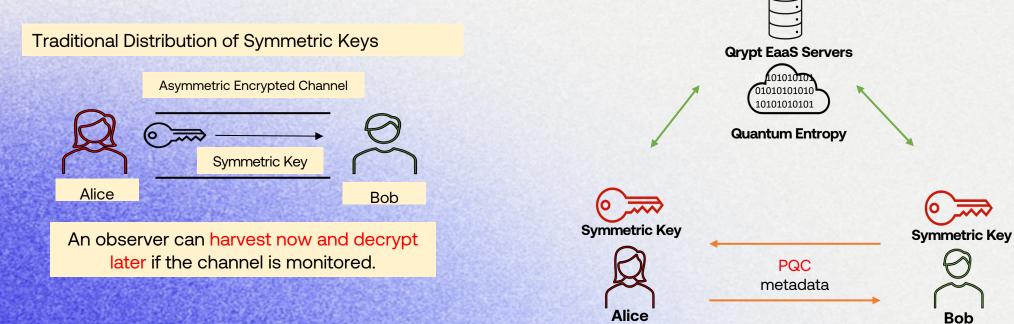


(L)


(3)

9

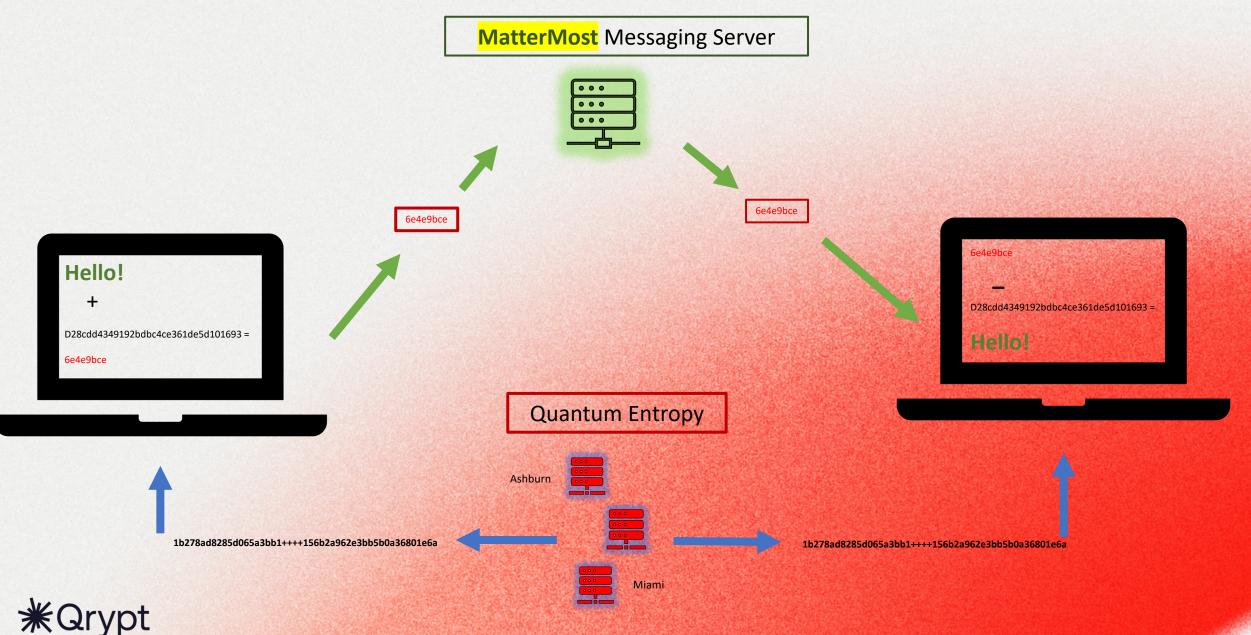
What if we didn't distribute keys?


- Simultaneously generate them at the endpoints
- HNDL issue is eliminated
- Cryptographic channel, not the same as the data channel decoupling
- Cloud-enabled, simplified implementation on modern infrastructure

A quantum solution

- Cryptographic extractors, metadata and sample implementation
- The cloud service nor the app should be capable of recovering the keys
- PQC is not used to exchange keys
- Benefits/cost

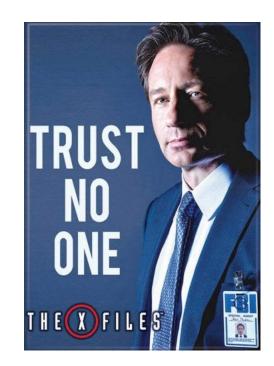
Keys are never distributed.



Sample then Extract

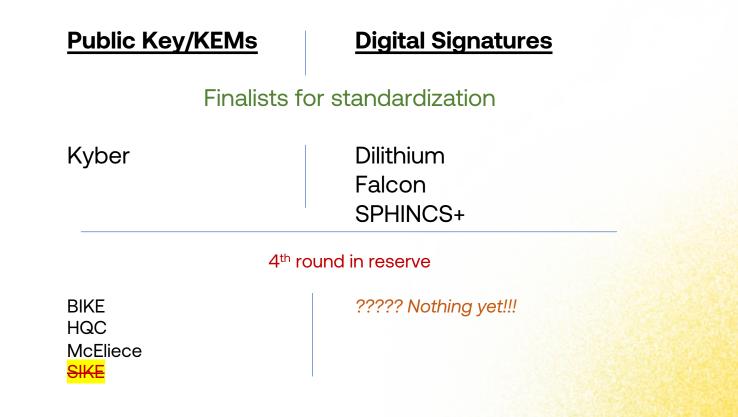
- Stateless and locally computable
- Preserve quantum entropy
- Force the attacker to compromise
 decoupled systems, but get nothing
- Compatible with PQC, but provides additional protections in a <u>crypto-agile</u> world even when new algorithms are compromised

Quantum security for any application – MatterMost

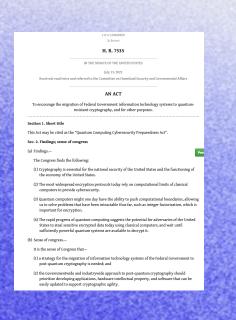


No free lunches

- If an attacker is on the endpoint/client, no encryption can help
- Compatible with PQC, but provides additional protections in a "crypto-agile" world
- "Trust no one" or leave vulnerabilities
- USG key escrow and backdoors never work



NIST process for PQC algorithm standardization


- Remaining candidates for 2024, possible issue with signatures, request for new submissions
- Assume another transition is coming, SIKE has fallen, potential weakness found in Kyber
- MFA analogy and trajectory

€Qrvpt

USG Directives, government is leading the way

- NSMs, EOs, HR, Senate, near full bipartisan support
- Message is clear: industries doing govt business must implement PQC
- National Security implications and changes to data governance

Executive Order 14073 National Quantum Initiative Advisory Committee (4 May 2022) 2022-10076.pdf (govinfo.gov)

NSM-8 NATIONAL SECURITY MEMORANDUM (4 May 2022)

National Security Memorandum on Promoting United States Leadership in Quantum Computing While Mitigating Risks to Vulnerable Cryptographic Systems | The White House

HR 7535 Quantum Computing Cybersecurity Preparedness Act (18 April 2022)

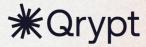
<u>Text - H.R.7535 - 117th Congress (2021-2022): Quantum Computing Cybersecurity Preparedness Act | Congress.gov | Library of Congress</u>

Executive Order 14028 (12 May 2021) Improving the Nation's Cybersecurity Executive Order on Improving the Nation's Cybersecurity | The White House Executive Order 14028: Improving the Nation's Cybersecurity | GSA

National Quantum Initiative(NQI) (21 December 2018)About the National Quantum Initiative - National Quantum Initiative

This will be a long process, decades of insecurity

- PQC is not a permanent fix, especially for long lived devices (SCADA, vehicles)
- QKD is unsuitable for the vast majority of applications
- Always on internet, 5G, IoT, all have new requirements
- Design considerations and project planning


U.S. Cybersecurity Policy Has Changed Since the Colonial Pipeline Attack

"If all of mathematics disappeared, physics would be set back by exactly one week." – Richard Feynman

Thank you.

denis@qrypt.com

₩Qrypt