BREAKING AND ENTERING: EMULATING THE DIGITAL ADVERSARY IN 2019

Bobby Thompson National Cybersecurity Assessments and Technical Services (NCATS)

Services Today

If vulnerability is the only element of risk that we can eliminate

Cyber Hygiene

- Open Source Intelligence Monitoring
- Phishing Campaigns and Assessments
- System & Application Vulnerability Scanning
- Remote Penetration Testing

Risk Evaluation

- Risk and Vulnerability Assessments
- Validated Architecture Design Reviews

Advanced Operations

- Critical Product Evaluation
- Red Team Assessments

.... lets focus on proactive elimination of vulnerability to reduce risk

Goals

REDUCE

REDUCE RISK AND INCREASE RESILIENCE

- IDENTIFY AND ELIMINATE ATTACK PATHS PRIOR TO THEIR EXPLOITATION BY MALICIOUS ACTORS;
- COLLABORATIVELY EVALUATE PRODUCTS WITH VENDORS IN ORDER TO INCREASE "OUT OF BOX" SECURITY;
- PROMOTE EFFECTIVE CYBERSECURITY RISK MITIGATION STRATEGIES.

ENABLE

ENABLE DATA-DRIVEN DECISIONS

- IMPROVE POLICY MAKERS
 ABILITY TO MAKE INFORMED,
 RISK-BASED DECISIONS;
- ENABLE ANALYSTS TO ENRICH THREAT ANALYSIS AND MODELING AND INFORM RISK MANAGEMENT;
- CHAMPION AND PROMOTE DATA-DRIVEN STANDARDS, POLICIES, GUIDELINES AND CAPABILITIES.

INFLUENCE

INFLUENCE OPERATIONAL BEHAVIOR

- MEASURE AND MONITOR THE IMPLEMENTATION OF MATURE OPERATIONAL CAPABILITIES
- NOTIFY STAKEHOLDERS OF SIGNIFICANT FINDINGS AND TRENDS

THREAT EMULATION MODEL COMPARISON

Threat emulation and assessment models means many things to many people

- Vulnerability Assessment
- Penetration Testing
- Red Team Operations
- Used interchangeably and often amalgamated
- Important to establish a clear delineation for *your* purposes
 - Each have advantages and disadvantages
- Caveats....

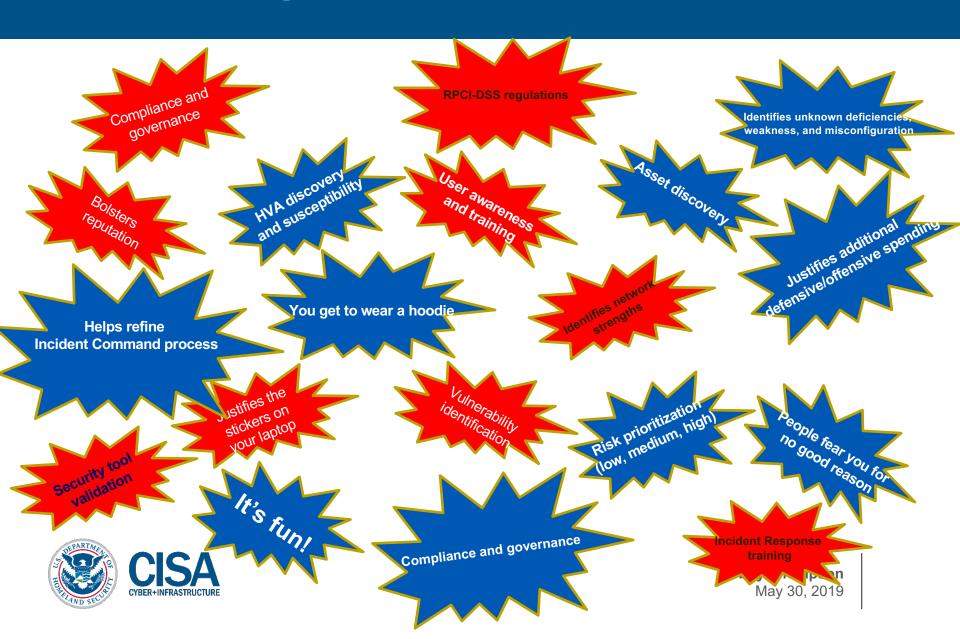
VULNERABILITY ASSESSMENT

- Primary objective: Identify vulnerabilities within target scope
- Vulnerabilities generally discovered via automated tools
- Typically, no exploitation is performed against hosts
 - Additional manual steps required to clear false positives
 - Some tools may provide the capability to attempt exploitation for validation
- This model could be leveraged by leadership to:
 - Discover critical vulnerabilities and recommended mitigations
 - Determine criticality statistics for a target environment
 - Validate patching capabilities in place are effective

PENETRATION TEST

Primary objective: Effect & outcome of vulnerability exploitation

- Emulation is conducted by applying an attacker mindset to discovered vulnerabilities
 - Breadth of testing is limited by scope and legal restrictions
- Tests are collaborative in nature and exploitation is coordinated
 - No obfuscation of activity or evasion of traditional IR
 - Focus is testing technical controls in an environment
- This model could be leveraged by leadership to:
 - Prioritization, management, and mitigation of risk
 - Identify and eliminate attack paths prior to exploitation by malicious actors
 - Find misconfigurations not discovered by vulnerability scans


RED TEAM OPERATIONS

Primary objective: Effective training for blue teams, SOCs, and network defenders

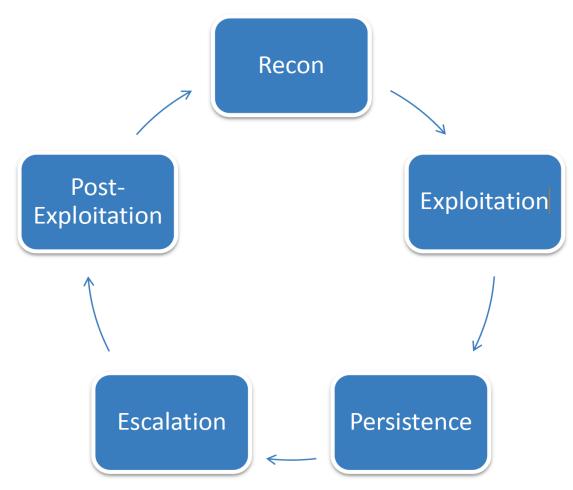
- Emulates real-world threat activity against a target organization
 - Events are not coordinated with security personnel
 - Utilization of evasion, obfuscation techniques, and advanced skill sets
 - Breadth of testing limited by legal restrictions
- Tests people, processes, and technologies
- This model could be leveraged by leadership to:
 - Train defensive personnel against a live threat actor in a controlled scenario
 - Test defensive detection and response capabilities of an organization

WHY EMULATE?

- Authorization of an ethical, professional, and realistic attacker within the confines of your network infrastructure
- Allows stakeholders to:
 - Understand and manage risk
 - Discern what happens if a real-world attacker infiltrates a network
 - Did the SOC detect adversarial activity/entry?
 - Was root cause determined?
 - Were critical assets manipulated?
 - What were the lessons learned?
- Cyclical Process
 - Adversary Emulation
 - Test/Challenge Defense/Blue Teams
 - Report, Review, Revise, Mitigate, & Follow Up
- Log, communicate, collaborate

- Infrastructure setup
 - Team share
 - C2 Infrastructure and redirectors
 - Domain names
 - Payload development
 - Data collection repository
 - Findings
 - Observations
 - Risks and issues
 - Daily summary
 - Persistent and non-persistent
 - Raw data

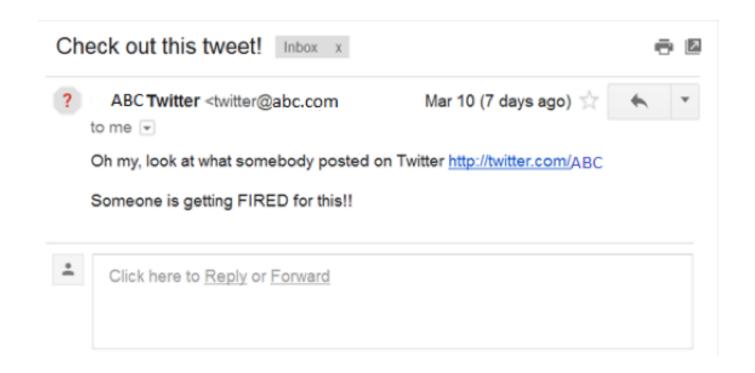
- Research, Read, Test, and Develop
- Standard, consistent, quantifiable, and adaptable TTPs, PPPs, and methodology
- Multiple options to exploit the kill chain
- Evolve, Adapt, Thrive
- Administrative statistics, findings, and standards (ATT&CK, NIST, etc.)
- Do not accept the status quo!


CVSS Score	Number Of Vulnerabilities	Percentage
0-1	1322	8.60
1-2	126	0.80
2-3	472	3.10
3-4	840	5.40
4-5	3653	23.70
5-6	2432	15.80
6-7	2367	15.30
7-8	2528	16.40
8-9	68	0.40
9-10	1620	10.50
Total	15428	
	Number Of Vulnerabilities	Percentage
		Percentage 1.60
CVSS Score	Number Of Vulnerabilities	
CVSS Score 0-1	Number Of Vulnerabilities 74	1.60
CVSS Score 0-1 1-2	Number Of Vulnerabilities 74 30	1.60 0.70
0-1 1-2 2-3	Number Of Vulnerabilities 74 30 179	1.60 0.70 3.90
0-1 1-2 2-3 3-4	Number Of Vulnerabilities 74 30 179 319	1.60 0.70 3.90 6.90
CVSS Score	Number Of Vulnerabilities 74 30 179 319 1151	1.60 0.70 3.90 6.90 24.90
CVSS Score	Number Of Vulnerabilities	1.60 0.70 3.90 6.90 24.90 17.20
CVSS Score 0-1 1-2 2-3 3-4 4-5 5-6 6-7	Number Of Vulnerabilities	1.60 0.70 3.90 6.90 24.90 17.20 16.40
CVSS Score 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8	Number Of Vulnerabilities	1.60 0.70 3.90 6.90 24.90 17.20 16.40 17.40

- Assume breach
- Replicate threat landscape specific to each customer adversarial modeling
- Wealth of intel reports, malware analysis sites, and formal collaboration groups
- Allow for adaptable TTPs
- Total and complete transparency
- Automation

THREAT EMULATION METHODOLOGY

METHODOLOGY: RECON


- OSINF and *passive/active* recon is the primary activity for the initial phase
- Information gathering, passive fingerprinting, social media monitoring
 - Personnel, roles, e-mail addresses, organization schemas, infrastructure
- Multitude of sources provide a wealth of valuable data
 - Google Dorking, LinkedIn, social media, and publicly hosted information
- Analytics are applied to tie the information into a bigger picture
 - Initial targets are developed based off this information
 - Specially crafted spear-phishing campaigns are developed
- Restriction: establishment of personas, impersonation, etc.

METHODOLOGY: EXPLOITATION*

- Primary attack vector is phishing
- Non-technical personnel are generally targeted
 - Human Resources, contract managers, press, hiring managers
 - Everyone and anyone
- Out of office replies can provide a wealth of information
- A rapport is built with the target before payload delivery
 - This establishes trust so suspicion is not raised upon payload execution
 - This also provides an avenue to test payload success
 - 1-3 campaigns, no rapport, lure is moderate in sophistication
- Payload delivers code execution and the code establishes C2
- Once exploitation is successful, the method can be replicated

METHODOLOGY: PERSISTENCE

- Once access is obtained, an initial triage and enumeration is performed
 - Triage is a series of steps taken to learn about the host environment
- Persistence may be required as C2 runs in memory
 - Persistence will provide us the opportunity to maintain access through reboots
 - Risk: artifact to be left on disk-potential point of detection
- Persistence is established based on the triage results
- Examples of persistence could include registry or schtask modification
 - Different lanes will use different methods of persistence so tactics are varied
- Persistence may be established or removed as required

METHODOLOGY: ESCALATION

- 2 primary actions in the escalation stage go hand in hand:
 - Lateral movement is using available data to establish C2 on another host
 - Privilege escalation is the act of raising permission levels on a host or network
 - These two actions often rely on each other for overall success
- Primary methods of escalation utilize misconfigurations
 - Shares and local drives are also searched for passwords or other information
 - "Living off the land" helps maintain stealth throughout operations
 - Performing exploitation for escalation could trigger technical controls
- Data on accounts and groups are pulled from Active Directory
 - An analytical process is applied to determine relationships and an attack path
 - If discovered, the attack path is then executed IAW available data

METHODOLOGY: ESCALATION

- End-goal for escalation is enterprise admin when possible
 - Can be abused to obtain unfettered access to most areas in the environment
 - Enterprise or domain administrator access not required when other paths to compromise sensitive business systems exist
- As a high level example:
 - May have local administrator rights to systems, but not domain rights
 - Can use local admin account to move laterally to other hosts on the network
 - Hosts are triaged and searched for new data or account information
 - Having local administrator rights on a host with a domain admin logged in could result in the compromise of the domain administrator account
- New accesses are used to further entrench in the environment

METHODOLOGY: POST-EXPLOITATION

- At this point the cyclical methodology can repeat itself
 - Once entrenched, operators can further perform internal reconnaissance
 - Based on that recon the sensitive business systems can be targeted
 - Privileges acquired in the escalation stage can be used to move to the SBS
 - Artifacts validating successful access to the SBS can be obtained
- Can also include additional:
 - Recon
 - PrivEsc
 - Lateral Movement
 - Obfuscated data pilfering

PLANNING, EXECUTION, POST-EXECUTION

Planning

Establish Rules of Engagement

Confirm Dates and Time Frames

Conduct Pre—Assessment Briefs

Define the Purpose

Identify Target Systems

Procure Scoping Documents

Notify SOC and External Partners

PLANNING, EXECUTION, POST-EXECUTION

Execution

Commence Assessment

Stay in Scope

Conduct Assessment

Identify and Exploit Vulnerabilities

Maintain Communications

Complete Assessment

Evidence Collection and Cleanup

PLANNING, EXECUTION, POST-EXECUTION

Post-Execution

Customer Out-brief

Validate Evidence

Report Writing

Assist with Remediating Weaknesses

Create Post-Assessment Follow Up

Strategic Roadmap

Self Assessment/Lessons Learned

ADVANCED THREAT ANALYTICS

- What does ATA do?
- ATA technology detects multiple suspicious activities, focusing on several phases of the cyber-attack kill chain including:
 - Reconnaissance
 - Lateral Movement
 - Domain Dominance (persistence)
- Malicious attacks are detected deterministically, by looking for the full list of known attack types including:
 - Pass-the-Ticket (PtT)
 - Pass-the-Hash (PtH)
 - Overpass-the-Hash
 - •Forged PAC (MS14-068)

- Golden Ticket
- Malicious replications
- Reconnaissance
- Brute Force
- Remote execution

For more information: cisa.gov

Questions? NCATS@hq.dhs.gov:

CISA CYBER+INFRASTRUCTURE