
© 2015 Carnegie Mellon University

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

© 2015 Carnegie Mellon University

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

RVASec 2015
Vulnerability Coordination
and Concurrency
Allen D. Householder
@__adh__

2
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Copyright 2015 Carnegie Mellon University

This material is based upon work funded and supported by Department of Homeland Security under Contract No.
FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally
funded research and development center sponsored by the United States Department of Defense.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of Department of Homeland Security or the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT
TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form
without requesting formal permission. Permission is required for any other use. Requests for permission should be directed
to the Software Engineering Institute at permission@sei.cmu.edu.

CERT® and CERT Coordination Center® are registered marks of Carnegie Mellon University.

DM-0002445

3
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Introduction & Motivations

Survey of Vulnerability Disclosure
Models

Modeling Coordination as
Concurrency

What We’ve Learned (So Far)

Conclusion

Vulnerability Coordination and Concurrency

4
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

CERT and Vul Disclosure Go Way Back

CERT Advisory

December 1988

ftpd vulnerability

5
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

http://spongebob.wikia.com/wiki/List_of_time_cards

6
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

132 3089

UNITED STATES OF AMERICA
BEFORE THE FEDERAL TRADE COMMISSION

COMMISSIONERS: Edith Ramirez, Chairwoman
 Julie Brill
 Maureen K. Ohlhausen
 Joshua D. Wright
 Terrell McSweeny

)
In the Matter of) DOCKET NO. C-4481
)
Fandango, LLC,)
a limited liability company.)
)

COMPLAINT

 The Federal Trade Commission, having reason to believe that Fandango, LLC
(“respondent”) has violated the provisions of the Federal Trade Commission Act, and it
appearing to the Commission that this proceeding is in the public interest, alleges:

1. Respondent Fandango, LLC (“Fandango”) is a Delaware limited liability company with
its principal office or place of business at 12200 W. Olympic Boulevard, Suite 400, Los
Angeles, CA 90064.

2. The acts and practices of respondent as alleged in this complaint have been in or affecting
commerce, as “commerce” is defined in Section 4 of the Federal Trade Commission Act.

RESPONDENT’S BUSINESS PRACTICES

3. Fandango provides a website and mobile applications that allow consumers to purchase

movie tickets and view showtimes, trailers, and reviews.

4. Fandango launched its Fandango Movies application for Apple, Inc.’s iOS operating
system in March 2009. In December 2010, Fandango launched an iPad version of the
application. Fandango distributes the application through the iTunes App Store, where it
describes the application as the “#1 movie ticketing app featured in Apple commercials.”
The iTunes App Store lists Fandango Movies among the top 10 free applications in the
Entertainment category. The application has been downloaded over 18.5 million times.

5. Although the Fandango Movies application is free to install and use, Fandango charges a

service fee when a consumer uses the application to purchase a movie ticket. As of
August 2013, 20 percent of Fandango’s total ticket sales were from its iOS mobile
applications.

March 28, 2014

7
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

3

12. To protect against these attacks, the iOS operating system provides developers with

application programming interfaces (“APIs”) that allow applications to create secure
connections using SSL. By default, these APIs validate SSL certificates and reject the
connection if the SSL certificate presented to the application is invalid.

13. The iOS developer documentation warns developers against disabling the default

validation settings or otherwise failing to validate SSL certificates, explaining that this
“eliminates any benefit you might otherwise have gotten from using a secure connection.
The resulting connection is no safer than sending the request via unencrypted HTTP
because it provides no protection from spoofing by a fake server.”

14. Application developers can easily test for and identify SSL certificate validation
vulnerabilities using free or low-cost, publicly available tools.

FANDANGO’S SECURITY FAILURES

15. From March 2009 to March 2013, the Fandango Movies application for iOS failed to
validate SSL certificates, overriding the defaults provided by the iOS APIs.

16. Before March 2013, Fandango did not test the Fandango Movies application to ensure
that the application was validating SSL certificates and securely transmitting consumers’
sensitive personal information. Although Fandango commissioned limited security audits
of its applications starting in 2011, more than two years after the release of its iOS
application, respondent limited the scope of these security audits to issues presented
when the “code is decompiled or disassembled,” i.e., threats arising only from attackers
who had physical access to a device. As a result, these audits did not assess whether the
iOS application’s transmission of information, including credit card information, was
secure.

17. Moreover, Fandango does not have a clearly publicized and effective channel for
receiving security vulnerability reports, and instead relies upon its general Customer
Service system to escalate security vulnerability reports to the proper employees. In
December 2012, a security researcher informed respondent through its Customer Service
web form that its iOS application was vulnerable to man-in-the-middle attacks because it
did not validate SSL certificates. Because the security researcher’s message included the
term “password,” Fandango’s Customer Service system flagged the message as a
password reset request and replied with an automated message providing the researcher
with instructions on how to reset passwords. Fandango’s Customer Service system then
marked the security researcher’s message as “resolved,” and did not escalate it for further
review.

18. After Commission staff contacted respondent, Fandango tested the Fandango Movies
application for iOS and confirmed that the application failed to validate SSL certificates.
Fandango discovered that the vulnerability also affected a separate iOS movie ticketing
application that Fandango developed and hosted for a third party. Within three weeks of
being contacted by Commission staff, respondent issued an update to both iOS

“Fandango does not have

a clearly publicized and effective channel
for receiving security vulnerability reports,

and instead relies upon its general Customer
Service system to escalate security

vulnerability reports to the proper employees.”

8
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

9
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

“Google … released
… two days before our
planned fix”

10
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

“We now have a 14-
day grace period”

11
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Resurgent disclosure kerfuffles

Proliferation of novice vendors
•  There are more new vendors than there is vulnerability

coordination experience to go around

•  Networked services bolted onto existing products
•  cars, refrigerators, door locks, light bulbs, medical devices, industrial

control systems

•  Anyone can become an app creator

Motivations
Why this? Why now?

12
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Vul markets & bug bounties change the flow of information
See also Katie Moussouris @ OWASP AppSec 2015 https://youtu.be/IPTYYg0OzYQ

Third party libraries are more important than ever

•  Yet library vuls are significantly harder to coordinate well
See also Kymberlee Price & Jake Kouns @ DerbyCon 4 https://youtu.be/sLxcOtEfGvg

Rampant growth in both awareness of security and the security
industry itself

•  Vul disclosure discussions are older than today’s participants
- “Rogues knew a good deal about lock-picking long before

locksmiths discussed it among themselves, as they have lately
done.” – A.C. Hobbs, 1853 (HT: Matt Blaze, Steve Bellovin)
– http://www.crypto.com/hobbs.html

Motivations
Why this? Why now?

13
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

“We now have multiparty, multifaceted coordination needs. These
are cross-industry requirements, which means we need to now
consider phasing our disclosures. This requires us to open the
genie box and reconsider our approach in a more organized
manner. No longer can a researcher jump out and save the
Internet from itself, since its complexity is beyond that stage. A
researcher may understand the bug, but the system of systems
and the interactions require a broader group effort .”

- Peter Allor, Federal Security Strategist, IBM Security
http://securityintelligence.com/determining-the-responsibility-of-a-vulnerability-disclosure/

Motivations
Why this? Why now?

14
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

“We now have multiparty, multifaceted coordination needs. These
are cross-industry requirements, which means we need to now
consider phasing our disclosures. This requires us to open the
genie box and reconsider our approach in a more organized
manner. No longer can a researcher jump out and save the
Internet from itself, since its complexity is beyond that stage. A
researcher may understand the bug, but the system of systems
and the interactions require a broader group effort .”

- Peter Allor, Federal Security Strategist, IBM Security
http://securityintelligence.com/determining-the-responsibility-of-a-vulnerability-disclosure/

Motivations
Why this? Why now?

15
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

© 2015 Carnegie Mellon University © 2015 Carnegie Mellon University

Modeling the Process

16
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Why Create Models?

Models enable conversations about the process
•  without devolving into arguments over the specifics of individual

disclosures.

Models can be subjected to analysis
•  and are easier to change than day-to-day operations.

Models promote learning and knowledge transfer
•  by removing unneeded detail

Reasoned disagreement about a model leads to better models.

17
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Birth Discovery Disclosure

Correction

Publicity

Scripting

Death

Arbaugh, Fithen, McHugh (2000)
Other models

Arbaugh, William A., William L. Fithen, and John McHugh. "Windows of
vulnerability: A case study analysis." Computer 33.12 (2000): 52-59.

18
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Notification Validation Resolution Release Follow-up

Christey, Wysopal (2002)
Other models

Christey, Steve, and Chris Wysopal. Responsible vulnerability
disclosure process. Internet-Draft. MITRE Bedford, 2002.

draft-christey-wysopal-vuln-disclosure-00.txt

19
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Responsible implies a value
judgment

…which turns it into an
argument over competing

perspectives

Coordinated Disclosure is our
preferred term

…but that doesn’t always mean
wait for the vendor to release a

patch

“Responsible” Disclosure?
A Quick Aside

20
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

“You're going to find that
many of the truths we
cling to depend greatly on
our own point of view”

21
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

 NIAC Vulnerability Disclosure Framework

15 of 52

Figure 1: Vulnerability Resolution Process Life Cycle

NIAC Vulnerability Disclosure Framework
(2004)
Other models

https://www.dhs.gov/xlibrary/assets/vdwgreport.pdf

Chambers, et al.

22
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

OIS Guidelines for Security Vulnerability
Reporting and Response (2004)

Other models

• The Vendor. The person, organization, or company that developed the product, or is
responsible for maintaining it.

• Coordinator. An optional participant that serves as a proxy for the Finder and/or
Vendor, assists with technical evaluations, or performs other functions to promote the
effectiveness of the security response process.

• Arbitrator. An optional participant that adjudicates disputes between the Finder and
Vendor.

Although computer users are the ultimate beneficiaries of this process, they are not listed among
the participants. This is because their role in maintaining security begins at the point where this
process terminates: when a suspected vulnerability has been investigated and confirmed, and a
remedy is available.

2.2 Phases
As shown in Figure 1, the basic steps of the process are:

• Discovery. The Finder discovers what it considers to be a security vulnerability (the
Potential Flaw).

• Notification. The Finder notifies the Vendor and advises it of the Potential Flaw. The
Vendor confirms that it has received the notification.

• Investigation. The Vendor investigates the Finder’s report in an attempt to verify and
validate the Finder’s claims, and works collaboratively with the Finder as it does so.

• Resolution. If the Potential Flaw is confirmed, the Vendor develops a remedy (typically a
software change or procedure) that reduces or eliminates the vulnerability.

• Release. In a coordinated fashion, the Vendor and the Finder publicly release information
about the vulnerability and its remedy.

Figure 1. Basic Steps in the Security Vulnerability Reporting and Response Process

2.3 Timeline
There is no single universally appropriate timeframe for investigating and remedying security
vulnerabilities. Instead, the Finder and Vendor must work together to develop a target timeframe
that balances the risk posed by a particular vulnerability versus the engineering challenges
associated with thoroughly investigating and effectively remedying it. By convention, 30 calendar
days has been established as a good starting point for the discussions, as it often provides an
appropriate balance between timeliness and thoroughness.

Within the agreed-upon timeframe, predictable and regular communications occur between the
Finder and Vendor. Within a maximum of seven calendar days of receiving the Finder’s report,
the Vendor acknowledges its receipt. Thereafter, the Vendor provides status updates every
seven calendar days, unless a different interval has been mutually agreed to. If the Finder does
not receive these communications, it sends a request to the Vendor, which the Vendor responds
to within three calendar days.

Once the investigation is complete and a remedy has been delivered, one additional timeline
remains, regulating the release of details that could lead directly to attacks if misused. The

© 2004, Organization for Internet Safety. All rights reserved. Reproduction, modification and
redistribution only with written permission from the Organization for Internet Safety

(http://www.oisafety.org).
3

• Contact information, if follow-up contact from the Vendor is desired.
• The security reporting process the Finder follows.

4.1.3 The Finder shall exercise reasonable efforts to include ample background information in
the VSR. Examples of such data include:
• How the Potential Flaw was found.
• Whether the Finder has published the information or shared it with other parties.
• Any confidentiality requirements that may apply to the report.

4.1.4 The Finder shall exercise reasonable efforts to include sufficient technical information in
the VSR to allow the Vendor to confirm the Finder’s report. Examples of such
information include:
• Products and versions on which the Potential Flaw has been identified.
• Configurations on which the Potential Flaw has been identified.
• Step-by-step instructions, proof-of-concept code, or other data that demonstrate the

Potential Flaw.

5 Notification Phase
Objective: The Finder contacts the Vendor and provides the Vulnerability Summary Report
discussing the Potential Flaw. The Vendor provides confirmation that it has received the report.

The key activity in Notification Phase is the establishment of effective communications between
the Finder and Vendor. The Finder contacts the Vendor via a published interface and provides
the VSR. The Vendor acknowledges receipt of the VSR and optionally notifies the general public
that it has an investigation underway.

Figure 3. Steps in Notification Phase

5.1 Contacting the Vendor
The single most important element of a successful security response process is open and
effective communications between the Finder and Vendor. This starts with the Vendor providing
an easily discoverable point of contact through which potential security vulnerabilities affecting
any of its products can be reported to it. By convention, this point of contact information should
be discoverable via http://[vendor_domain]/security.

© 2004, Organization for Internet Safety. All rights reserved. Reproduction, modification and
redistribution only with written permission from the Organization for Internet Safety

(http://www.oisafety.org).
7

• Test results showing that the behavior only occurs when the product is configured in
a way that itself violates normal security practices and exposes the system to
significant risk.

• Analysis of the attack scenario, showing that the behavior could not be realistically
exploited or could only be exploited in cases where the system was already
insecure.

6.5.6 If the Vendor is unable to either confirm or disprove the Potential Flaw, the Vendor shall
advise the Finder of the testing it has performed, the results it has witnessed, and the
evidence it would require to either confirm or disprove the report.

6.5.7 If the Finder disputes the Vendor’s findings, it shall provide substantiation such as:
• Test results that contradict the Vendor’s findings.
• Analysis of the attack scenario, showing that the behavior could be exploited

realistically and in cases where the system was otherwise secure.
6.5.8 A disputing Finder may provide any information that will assist the Vendor in resolving

the dispute, up to and including code that demonstrates the Potential Flaw.
6.5.9 A disputing Finder shall not be required to provide information to conclusively resolve a

dispute.
6.5.10 The Vendor shall investigate any additional data or analysis provided by a disputing

Finder, and update its findings as appropriate.
6.5.11 Regardless of the Vendor’s findings, the Finder may publish information concerning

the Potential Flaw.
6.5.12 If the Finder chooses to publish information concerning the Potential Flaw per

paragraph 6.5.11 above, it shall do so in accordance with the stipulations specified in
Section 8 below (“Release Phase”).

7 Resolution Phase
Objective: If the Potential Flaw is confirmed, the Vendor identifies where the Flaw resides, then
develops a remedy that eliminates or reduces the risk of the vulnerability.

Resolution Phase presupposes the case where a vulnerability has been confirmed. During this
phase, the Vendor, working in concert with the Finder, determines the appropriate remedy for the
vulnerability, implements it, and takes steps to ensure that it is thoroughly tested and eliminates
the vulnerability.

Figure 5. Steps in Resolution Phase

7.1 Remedy
If the investigation confirms that a vulnerability does exist, the Vendor develops a remedy for all
supported products and versions. In many cases, the Vendor will provide root-cause data,
preliminary versions of the remedy, or other data to the Finder, and seek the Finder’s assistance
in corroborating its findings or confirming the quality of the remedy. Although this is optional for

© 2004, Organization for Internet Safety. All rights reserved. Reproduction, modification and
redistribution only with written permission from the Organization for Internet Safety

(http://www.oisafety.org).
13

Requirements
7.7.1 The Finder or Vendor may propose publishing a workaround as an interim measure

while the remedy discussed in Section 7.3 above (“Remedy Types”) is being completed.
7.7.2 The party proposing the workaround shall substantiate its proposal by reference to

factors such as:
• The number of systems at risk and the imminence of the risk.
• The timeframe for a remedy.
• The disruption that the proposed workaround will entail.
• The workaround’s likely uptake.

7.7.3 Publishing a workaround shall require the mutual consent of both parties.
7.7.4 If the Finder and Vendor agree to publish a workaround, both shall exercise reasonable

efforts to avoid disclosing details that would aid attackers in exploiting the vulnerability.

8 Release Phase
Objective: In a coordinated fashion, the Vendor and the Finder publicly release information about
the vulnerability and remedy.

In Release Phase, the Vendor and Finder develop documentation thoroughly describing the
vulnerability, the risk it poses, and steps users can take to minimize or eliminate it. When the
remedy is complete the Vendor releases it, following which the Vendor and Finder release their
respective documentation in concert. In the interest of providing users with a reasonable period
during which to defend their systems, the parties delay the public release of data that could
directly lead to the vulnerability being exploited.

Figure 6. Steps in Release Phase

8.1 Advance Notification
This document does not address processes for notifying selected groups of users about
vulnerabilities in advance of the general population. While such “pre-release notifications” are
sometimes done, and in very well-controlled cases can be carried out effectively, they are not a
recommended practice in the general case. To cite just two examples of why this is so, there is
no industry-wide consensus regarding the selection criteria for advance notification; and such
data, if leaked, could increase the risk to the general population. Because this document
addresses only activities that are appropriate for typical cases, advance notification is beyond its
scope.

© 2004, Organization for Internet Safety. All rights reserved. Reproduction, modification and
redistribution only with written permission from the Organization for Internet Safety

(http://www.oisafety.org).
17

Requirements
3.3.1 If an irreconcilable conflict, deadlock or communication breakdown occurs, the Finder or

Vendor may withdraw from the use of this process.
3.3.2 If the Finder or Vendor withdraws from this process, it shall exercise reasonable efforts

to provide prior notice to the other party.
3.3.3 The Finder or Vendor shall not be required to await acknowledgment of its notice to

withdraw from the process.

4 Discovery Phase
Objective: A security researcher, customer, or other interested person or organization discovers
what they consider to be a security vulnerability, validates the finding, and prepares a report
describing the Potential Flaw.

In Discovery Phase, a finder identifies a potential security vulnerability. Vulnerabilities are found
in software products by a variety of individuals, including security consultants, IT professionals,
independent researchers, academics, customers, and casual users2. They are found both
through directed research and normal use.

Before reporting a Potential Flaw to the Vendor, the Finder should perform some due diligence,
such as:

• Determining whether the issue has previously been publicly identified and remedied.
• Confirming whether the Potential Flaw affects the product when the current maintenance

release or service pack is applied.
• Investigating whether the Potential Flaw affects the default configuration of the product.
• Developing a reproducible method for witnessing the Potential Flaw.

Figure 2. Steps in Discovery Phase

4.1 Vulnerability Summary Report
After validating its findings, the Finder drafts a Vulnerability Summary Report (VSR) discussing
the Potential Flaw. The VSR should provide both background and technical information to enable
the Vendor to investigate the Potential Flaw. This can include step-by-step instructions, proof-of-
concept code, or any other data the Finder believes may help the Vendor confirm its findings.

Requirements
4.1.1 The Finder shall validate its findings and draft a written Vulnerability Summary Report3

(VSR).
4.1.2 The Finder shall include information in the VSR detailing its intended participation in the

investigation. Examples include:

2 Vendors can and do find security vulnerabilities in their own products, and when this happens it
is important that the vulnerabilities be remedied quickly and effectively. However, the case where
the Finder and Vendor are the same party is significantly different from the case where they are
different, and the process for addressing “internal finds” is outside the scope of this document.

© 2004, Organization for Internet Safety. All rights reserved. Reproduction, modification and

3 A sample VSR is available from the OIS web site (http://www.oisafety.org/guidelines/samples).

redistribution only with written permission from the Organization for Internet Safety
(http://www.oisafety.org).

6

Figure 4. Steps in Investigation Phase

6.1 Status Updates
Regular status updates not only show the investigation’s progress, but also provide the Finder
with opportunities to offer feedback. By default, the Vendor should send status updates weekly.

Requirements
6.1.1 Unless otherwise agreed upon, the Vendor shall provide status updates7 to the Finder

no less often than every seven (7) calendar days.
6.1.2 The Vendor may use any mutually agreed-upon method of providing status updates.

Examples of commonly used methods include:
• Telephone contact.
• E-mail.
• A secure repository, such as a secure web site or FTP site.

6.1.3 If the Vendor fails to provide status every seven (7) calendar days or at the agreed-
upon interval (if different), the Finder may send a Request for Status8 (RFS).

6.1.4 The RFS shall provide information showing that seven (7) calendar days or the agreed
upon interval has passed since the last update.

6.1.5 Upon receiving an RFS, the Vendor shall acknowledge9 receipt of the RFS and provide
a status update.

6.1.6 If the Finder does not receive acknowledgment within three (3) calendar days of
sending the RFS, the Finder may take the steps described in Section 3 above (“Conflict
Resolution and Third Parties”).

7 A sample status report is available from the OIS web site
(http://www.oisafety.org/guidelines/samples).
8 A sample RFS is available from the OIS web site (http://www.oisafety.org/guidelines/samples).

© 2004, Organization for Internet Safety. All rights reserved. Reproduction, modification and

9 A sample acknowledgment is available from the OIS web site
(http://www.oisafety.org/guidelines/samples).

redistribution only with written permission from the Organization for Internet Safety
(http://www.oisafety.org).

10

http://www.oisafety.org/

23
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Arora, Telang, and Xu (2008)
Other models

Arora, Telang, and Xu: Optimal Policy for Software Vulnerability Disclosure
Management Science 54(4), pp. 642–656, © 2008 INFORMS

Arora, Telang, and Xu: Optimal Policy for Software Vulnerability Disclosure
644 Management Science 54(4), pp. 642–656, © 2008 INFORMS

Figure 1 Timeline of Vulnerability

0 x tendT !

and show that the number of attacks exhibits a bell-
shaped curve over time since the discovery of the vul-
nerability. Arora et al. (2006a) find that disclosing a
vulnerability leads to more attacks, and the number
of attacks are higher if the patch is not available at the
time of disclosure. Arora et al. (2006c) find that early
disclosure prompts vendors to release patches more
quickly.
Some recent papers analyze economic issues related

to vulnerability disclosure. Kannan and Telang (2005)
show that a market for software vulnerability would
lower social welfare if buyers choose to disclose the
vulnerabilities they buy. August and Tunca (2005)
analyze how unpatched users exert externalities on
patched users, and show that the presence of the
externality affects the vendors’ incentives to improve
network security. We also explore such externalities
by allowing a fraction of users to implement work-
arounds and impose the externalities on the users
that lack this ability. Arora et al. (2005) develop an
analytical model where the possibility of patching
a software product after it has been released cre-
ates incentives for the vendors to rush to the market
with buggier products, especially in larger markets.
Cavusoglu et al. (2005) present a model of risk shar-
ing between the vendor and software users where the
risk arises due to vulnerabilities. These papers do not
deal with the issue of disclosure directly.
Choi et al. (2005) present a model in which the

vendor chooses to disclose vulnerability information
along with a patch when a vulnerability is discovered.
They show that the vendor may not disclose the vul-
nerability information even when it is socially optimal
to do so. They do not model the threat of disclosure.
Png et al. (2006) model a game between users and
attackers. They show that externalities cause users
to underinvest in security and suggest policy mea-
sures to remedy the problem. Nizovtsev and Thursby
(2007) model the incentives of benign users to dis-
close software vulnerabilities through an open pub-
lic forum, whereas in our model, a benign user only
contacts CERT, which then chooses the disclosure
window. Cavusoglu et al. (2004) also analyze the
question of vulnerability disclosure. However, their
operationalization of social cost differs from ours.
Thus, unlike in our model, they find that vendors may
release the patch before the socially optimal time.

3. Basic Setup and Assumptions
There are four participants in our model—a social
planner, a vendor, representative users (customers of

the vendor’s products), and attackers. Customers’ and
attackers’ behavior is exogenously fixed, and we focus
on the decisions of the social planner and the vendor.
We model a situation (see Figure 1) where a vulner-
ability is discovered by a benign discoverer (differ-
ent from the vendor or attackers) and is reported to
a social planner (like CERT) at time “0.”3 The social
planner immediately informs the vendor and sets a
protected period, T , after which it commits to pub-
licly disclose this information. The vendor makes a
one-time decision on when to release a patch.4 For
simplicity, patch release time, ! , is assumed to be
deterministic.
Users incur losses when attackers exploit the vul-

nerability in their systems. Attackers exploit the vul-
nerability when they become aware of it and if the
customers have not patched. The disclosure policy
is binary: Either all information is disclosed or none
is. To ensure that losses are bounded, we treat the
product life cyle (or version life cyle), tend as large
but finite. Instant disclosure means T = 0, whereas
a secrecy policy implies that T > tend, which essen-
tially means that the information is never disclosed
(any action after tend is economically irrelevant in our
model). We assume, for now, that customers apply the
patch as soon as it is released.
Attackers may discover the vulnerability at time x,

where x is a random variable with a pdf, f "x#. Attack-
ers exploit the vulnerability at time x or at time T ,
whichever is earlier. Estimates suggest that about
60% of the documented vulnerabilities can be ex-
ploited almost instantly, either because exploit tools
are widely available or because no exploit tool is
needed (Symantec 2003). Allowing for a deterministic
period of exploit-tool development is straightforward.
A key assumption in our model, relaxed in §5, is that
users remain unprotected until a patch is released.
Our model has two stages. In the first stage, the

social planner chooses the optimal protected pe-
riod T ∗, and in the second stage, the vendor chooses
a patch development time, !∗, in response to T . The

3 Because our goal is to study the socially optimal protected period,
we examine the case where the vulnerability is reported to the
social planner. If the vendor were to find the vulnerability, it would
act as if the protected period were infinite. If the attacker were
to find the vulnerability, it would be as if the protected period
were zero.
4 This assumption makes sense if the vendor has to commit
resources to develop a patch for a period of time. However, implic-
itly it requires that the vendor releases the patch as soon as the
patch is ready.

Arora, Telang, and Xu: Optimal Policy for Software Vulnerability Disclosure
Management Science 54(4), pp. 642–656, © 2008 INFORMS 647

we do not explicitly model) or the social planner is
concerned about its reputation, or both. The vendor’s
expected cost function is

V !"# q$T %=C!"# q%+&!!"#T # q%'

This cost function has two terms. The first term is the
cost of patch development, C!"# q%, and the second is
the portion of expected user loss internalized by the
vendor, &!!"#T # q%.

4. Model and Analysis
We are now ready to analyze (i) the vendor’s decision
to release the patch for a given protected period and
(ii) the socially optimal protected period. We begin by
analyzing the case where customers apply the patches
instantly (p!0# q%= 1) so that postpatch losses are zero
(L̃!·% = 0), and hence patch quality is exogenously
set at some level q. We relax these assumptions later
in §4.4.
First, we outline the vendor’s decision, and then we

analyze the optimal disclosure policy and how vari-
ous factors condition the policy.

4.1. Vendor’s Decision
The expected user loss is as given in Equation (1), and
the vendor’s objective function is8

V !"$T %=C!"%+&L!"#T %' (3)

From Equation (1), L!"# T % is continuous every-
where, and is differentiable everywhere except per-
haps at " = T . Lemma 1 shows that it is also convex
in " . Because C!"% is also convex in " , that vendor
cost function V !"#T % is strictly convex in " as well.
Lemma 1 shows that there always exists a unique
optimal "∗ for a given T . (All proofs are in the online
appendix, which is provided in the e-companion.)9

Lemma 1. The expected customer loss function L!"# T %
is strictly convex in patch development time " . For any
given T , there exists a unique optimal patch development
time "∗.

However, an optimal "∗ may be at a kink point
because the vendor cost function is not differentiable
in " at " = T (unless l′!0% = 0%. In the following, we
analyze the possibility of such a kink point and its
properties.10 Figure 2 shows the two components of
the vendor’s objective function and highlights such a
kink point.

8 For notational clarity, we suppress q from the cost function C!·%
and the loss function L!·% when q is not a decision variable.
9 An electronic companion to this paper is available as part of the
online version that can be found at http://mansci.journal.informs.
org/.
10 We are grateful to a reviewer for alerting us to the existence and
importance of the kink point.

Figure 2 Kink Point in Vendor Cost Function

C
os

t

T

C (τ)

τ

λL (τ,T)

V(τ,T)

At any such kink point, the left-hand-side derivative
of V w.r.t " is V −

" !T %$"=T = !C" !"%+&
∫ T

0 l′!"−x%dF !x%%.
The right-hand-side derivative is given by

V +
" !T %$"=T

=C" !T %+&
∫ T

0
l′!T − x%dF !x%+&!1− F !T %%l′!0%'

Because l′!0% > 0, the right-hand-side derivative is
bigger than the left-hand-side derivative. The eco-
nomic interpretation is that a kink will exist if attack-
ers can exploit even a very small gap between the
disclosure and the patch. Empirical results in Arora
et al. (2006a) show that typically the disclosure is fol-
lowed by a spike in attacks, which subside following
the release of the patch, but only with some delay.
This suggests that l′!0% > 0 is plausible and perhaps
even likely.
At a “kink” equilibrium "∗ = T , the right-hand-

side derivative must be nonnegative and the left-
hand-side derivative must be negative. Define T k such
that V +

" !T %$"=T k = 0. Note that the second derivative
of the right-hand-side w.r.t. T is equal to C"" !T % +
&
∫ T

0 l′′!T − x%dF !x%> 0' Thus, the right-hand-side de-
rivative is increasing in T . Because V +

" !T %$"=T k = 0
for T < T k, V +

" !T %$"=T < 0' Hence, for all T < T k#
"∗ ̸= T .
Define the socially optimal patching time, " s , i.e.,

the patch release time that minimizes the uncon-
strained social cost (i.e., &= 1) as:

" s = argmin
"

{

C!"%+
∫ "

0
l!" − x%dF !x%

}

' (4)

Let "& denote the optimal patch development
time given secrecy policy (i.e., "& = argmin" C!"% +
&
∫ "

0 l!" − x%dF !x%%.

Lemma 2. T k, " s and "& exist.

Arora, Telang, and Xu: Optimal Policy for Software Vulnerability Disclosure
648 Management Science 54(4), pp. 642–656, © 2008 INFORMS

The difference between T k and !! (the time when
the vendor will release the patch if left alone) is due to
the impact of disclosure. If even a vanishingly small
delay in releasing the patch (after disclosure) leads to
a loss (so that l′"0# > 0), then T k < !!. Any increase
in l′"0# will decrease T k and increase the gap between
T k and !!. A vulnerability for which no exploit code
is needed, which can be remotely exploited, or where
attackers have large numbers of “zombie” computers
under their control, is likely to be characterized by
higher values of l′"0# and lower values of T k. Corre-
spondingly, T k plays an important role in our analysis
because we show below that even if $< 1, the social
planner may be able to achieve the first-best outcome
by setting T ≥ T k. Thus, the factors that affect T k

have important implications for the disclosure policy.
To further characterize T k, we show below that T k

decreases when the internalization factor ($) increases
or the probability of attackers finding the vulnerabil-
ity increases (a first-order stochastic dominant shift
in F "x#).11

Lemma 3. "i# T k is decreasing in $. "ii# If G"x# is a cdf
defined over the same domain as F "x# such that G"x# ≥
F "x#, then T k corresponding to G"x# is smaller than the
T k corresponding to F "x#.

Note that T k is the smallest protected period such
that the vendor releases the patch within the pro-
tected period. A higher $ and an increased probabil-
ity of the vulnerability being discovered by attackers
imply higher marginal cost to the vendor of delaying
the patch for a given T .
We are now ready to define the optimal vendor

behavior for a given T . The vendor’s best-response
function is the implicit function of V! "!% T #= 0.

Theorem 1. For T ∈ &0%T k#, the vendor patches after
disclosure—i.e., T < !∗ < T k—and the slope of !∗"T # is
strictly less than one. For T ∈ &T k% !!', the vendor patches
at T—i.e., !∗ = T—and hence slope of !∗"T # is equal to
one. For T ∈ &!!% tend', the vendor patches at !!, and
hence the slope of !∗"T # is equal to zero.

Theorem 1 shows, as many full-disclosure propo-
nents believe, that reducing T results in the vendor
releasing the patch more quickly (i.e., (!∗/(T > 0, but
only if T < !!). Further, for any T < T k, !∗ is an inte-
rior point and the vendor patches after the protected

11 Note that a kink can arise in other ways as well. Punitive dis-
closure, such as where a vendor releasing a patch after the disclo-
sure is publicly “named and shamed,” will not affect T k. It will,
however, increase the possibility of the kink solution by making
the vendor objective function discontinuous at the disclosure point.
Such punitive disclosure punishes the vendor without imposing
losses on customers, thereby increasing the potency of the disclo-
sure policy. (See also §4.2.1.)

Figure 3 Patch Development Time ! as a Function of Protected
Period T

Tk T!∞

!*

period elapses; for !! ≥ T ≥ T k, !∗ = T so that T k pos-
sibly marks a kink in the best-response function !"T #.
Figure 3 shows !∗ as a function of T : !∗ increases
in T until !! and is flat after that. Moreover, after
T k is reached, !∗ = T . Also, notice that because ! > 0
when T = 0 and (!∗/(T < 1, the gap between !∗ and
T shrinks.
The lower $ is, the slower the vendor is to patch.

However, this is only true when T < T k, after which
the vendor chooses to patch at T regardless of $.
(Recall from Lemma 3 that T k itself is decreasing in $.)
This is formalized in Corollary 1.

Corollary 1. A higher internalization factor implies
an earlier patch, (!∗/($ < 0 for any T < T k. When T ≥
T k, (!∗/($= 0.

4.2. The Social Planner’s Decision: Optimal
Disclosure Policy

The social planner chooses optimal T ∗ to minimize
total social cost, S"T #, taking into account the ven-
dor’s best-response function !(T). The social cost is
given by

S"T #=C"!"T ##+L"!"T #%T #) (5)

Social cost differs from vendor cost in that the former
includes the entire expected user loss, whereas the
latter includes only a fraction $ of the expected user
loss. When the vendor internalizes only a portion of
customer loss, i.e., $ ∈ "0% 1#, the vendor’s incentives
and the social planner’s incentives are not aligned.
We can now derive the socially optimal policy. We

assume that S"T # admits only a single minimum (see
the online appendix for the sufficient condition for a
unique T). A variety of functional forms, including
the exponential and quadratic loss functions, yield a
single minima.
Recall that ! s is the socially optimal time to deliver

the patch, i.e., the time a vendor would release the
patch on its own if it internalized the entire cus-
tomer loss. Because the vendor does not internalize

Arora, Telang, and Xu: Optimal Policy for Software Vulnerability Disclosure
Management Science 54(4), pp. 642–656, © 2008 INFORMS 649

Figure 4 Social Cost as a Function of T

T* T

S

Tk! s !∞

the entire customer loss, absent a threat of disclosure,
the vendor delivers the patch after ! s . Given a pro-
tected period T , the vendor will deliver the patch after
T if T < T k, and exactly at time T for T ≥ T k. Hence,
as long as ! s ≥ T k, the social planner can choose T = ! s

and the vendor would patch exactly at ! s . However
for ! s < T k, the socially optimal T , denoted by T ∗, lies
between ! s and T k, as shown in the next theorem and
in Figure 4.

Theorem 2. When ! s < T k, the socially optimal pro-
tected period T ∗ is bounded within "! s#T k$, i.e., ! s < T ∗ ≤
!"T ∗$≤ T k. When ! s ≥ T k, T ∗ = !"T ∗$= ! s .

Clearly, whenever ! s ≥ T k, the social planner can
achieve the socially best outcome even though %< 1.
Thus, disclosure policy can be an effective and potent
tool even though the social planner can affect vendor
behavior only indirectly.

4.2.1. Factors Affecting the Optimal Disclosure
Policy. An increase in % will cause the vendor to re-
lease the patch earlier because the vendor internalizes
a larger fraction of customer losses. A higher % also
implies that the vendor is more sensitive to disclosure.
Hence, the social planner will optimally reduce T ∗.
The optimal protected period, T ∗, decreases with %
until % reaches %0 and is constant thereafter. The intu-
ition is that T k is decreasing in % (from Lemma 3),
so that for high enough %, ! s ≥ T k holds. If ! s ≥ T k,
the social planner can choose T = ! s and the vendor
would patch exactly at the socially optimal time ! s .
This is formalized in Theorem 3.

Theorem 3. There exists a %0 ∈ "0# 1$ such that for
%≥ %0, ! s ≥ T k, and !∗ = T ∗ = ! s and T ∗ is independent
of %. For %< %0, ! s < T k and the socially optimal protected
period, T ∗, is decreasing in %.

When ! > T , there is a period when customers are
exposed. The gap between T and ! falls with %, and
! becomes more responsive to T . In short, the social
planner has greater leverage with the vendor when

% is higher. This result is important; disclosure policy
relies upon the sensitivity of the vendor to customer
losses. When the vendor is more sensitive to customer
losses (higher %), the social planner has more lever-
age in forcing vendors to release the patch on time. In
this respect, our result is counterintuitive: One expects
greater alignment between the firm’s objective func-
tion and social welfare to weaken the need for regu-
lation, but here the reverse is true, because a greater
alignment between the two also increases the effi-
cacy of regulation. However, our numerical analysis
(see §4.5) suggests that even for low %, suitably cho-
sen disclosure can generate significant social benefits.
There are two ways to a higher %. One is when cus-

tomers are able to punish the vendor by switching
to a competing product. We conjecture that competi-
tion increases %. Second, larger users are more likely
to contract with vendors about the patching support.
Thus, vendors whose market base consists of large
users will have higher %.

4.3. Robustness of the Model
Although not analyzed here, the social planner plau-
sibly has a spectrum of disclosure possibilities. For
instance, the social planner could issue a general
warning that a particular product is insecure, which
could hurt the vendor without imposing large losses
on users. In terms of our model, one would add a
term to the vendor’s cost, so the modified vendor cost
is V "·$=C"!$+%L"!# T $+&"!# T $ and the social cost
is S"·$ = C"!$ + L"!# T $, where &"!# T $ captures the
damage suffered by the vendor not due to the cus-
tomer loss. We expect that &"!# T $= 0 for ! ≤ T and
is positive and increasing in ! − T . Including such a
term will cause a discontinuity in the cost function at
! = T , and cause cost function to be concave around
! = T , thereby increasing the likelihood of the vendor
patching at T . This modification can also be used to
analyze the case where the vendor suffers losses that
are not included in the social cost function (e.g., where
the vendor loses some customers to other vendors by
releasing the patch late).
It is also plausible that the postdisclosure loss func-

tion differs from l"·$. If we let m"! − T $ represent the
postdisclosure losses, then as long as m"0$ = 0, m"·$
is convex, and V +

! "T $&!=T is monotonically increasing
in T , our basic results should continue to hold.12 Dis-
closure by the social planner may also increase % by
forcing the vendor to acknowledge responsibility. This
is as if the vendor’s (but not social) postpatch loss
function were m"·$= ' l"·$, where ' > 1.

12 If m"0$> 0 and m′′"·$< 0, the cost functions may be nonconvex,
implying that patching soon after disclosure is suboptimal, and
thus we should see many cases of patching coinciding with
disclosure.

Arora, Telang, and Xu: Optimal Policy for Software Vulnerability Disclosure
Management Science 54(4), pp. 642–656, © 2008 INFORMS 655

Figure 9 Social Cost, T ∗ and T w as a Function of Smart Users

10
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

20

30

40

T

Proportion of smart users

5,000

5,500

6,000

6,500

So
ci

al
co

st

T w

T*

No work-around region Work-around region

Social cost

However, this intuition is incomplete because the
vendor does not fully internalize user losses. Smart
users convey a negative externality upon other users
because smart users’ presence leads the vendor to
prefer the work-around option even when it is not
socially desirable. As a result, the social planner may
be forced to choose a longer protected period to avoid
a work-around. This negative externality may even
offset the beneficial effect leading to a net increase in
social cost.18 Indeed, for an intermediate range of !,
where the vendor prefers to induce work-arounds,
but the social costs are lower without work-arounds,
the presence of smart users raises total social cost.

Theorem 7. If Sw"!#− S"!# is decreasing in !, then
there exists a region between [ˆ̂!$!̂] such that the presence
of smart users results in a higher social cost.

In Figure 9, we plot T and T w on the left y-axis,
and the social cost on the right y-axis. At ! = 0, the
social cost is approximately 6,000. For intermediate
values of !, the social cost is higher than 6,000. In
Figure 9, T w = T ∗"!= 0# at != 0%2. Beyond that, the
social planner strictly prefers no work-arounds, but
the only way to prevent work-arounds is by setting
T ∗ = T w. Once !̂ is reached, the social planner strictly
prefers work-arounds (notice the drop in optimal T ∗)
and discloses early. Further increases in the fraction
of smart users reduce social cost, and at !> 0%78, the
social cost drops below 6,000.

The effect of market size follows the same intuition
as in the previous section. A larger market increases
the marginal cost of customer loss relative to the patch
development cost, and hence decreases & and T , and
also reduces the gap between & and T (see Figure 6).
Thus, a larger market reduces T w, makes a work-
around less likely, and increases !̂.

18 We are grateful to an anonymous reviewer for pointing us in this
direction.

6. Conclusions
How and when vulnerabilities should be disclosed is
an important policy issue. A sensible disclosure pol-
icy must balance the need to protect users against
attackers and the need to prod vendors to develop
patches expeditiously. We develop a model that out-
lines how the policy maker can optimally influence
vendor behavior to minimize social cost.

We find that as long as the vendor does not inter-
nalize the entire user loss, the vendor will release the
patch later than is socially optimal, unless threatened
with disclosure. In some cases, the policy maker can
force the vendor to release the patch at the socially
optimal time, whereas in other cases the optimal pro-
tected period is such that the vendor releases the
patch after disclosure, although still earlier than the
vendor would otherwise have. The more responsive
the vendor is to user losses, the more aggressive the
social planner can be by setting a shorter protected
period. In general, both an instant disclosure and
a secrecy policy are suboptimal, although numerical
simulations suggest that instant disclosure is particu-
larly inefficient.

These results are robust to a partial implementa-
tion of the patch by users and to endogenous vari-
ations in the quality of the patch. When users take
time to apply patches, the protected period should
be longer. When the vendor also chooses patch qual-
ity (and higher-quality patches are applied faster),
contrary to conventional wisdom, a longer protected
period may even reduce the quality of the patch and
increase social cost.

When users can defend themselves via work-
arounds, disclosure empowers users and increases the
potency of disclosure policy, leading to a shorter pro-
tected period. However, this also creates a negative
externality for users incapable of defending them-
selves. The vendor opts for work-arounds too read-
ily, leading the social planner to extend the protected
period in some cases. As a result, the social cost may
actually rise as the proportion of users capable of
implementing work-arounds increases. This suggests
that unless the defensive measures are within the
reach of a large enough number of users, encouraging
their use may be counterproductive.

Our results are subject to a variety of qualifications.
First, we leave for future research the case where a
vendor can respond to disclosure by accelerating the
rate of patch development, preferring to focus on the
insights from a simpler static model. Thus, our model
is best thought of as relating to the policy rather
than a patch release decision support system. We con-
jecture that allowing for such measures will lower
the cost of disclosure, implying that the optimal pro-
tected period would be shorter. Second, in our model,
costs and benefits are known with certainty. Thus, it

“as long as the vendor does
not internalize the entire user
loss, the vendor will release
the patch later than is socially
optimal, unless threatened with
disclosure.”

“The more responsive the
vendor is to user losses, the
more aggressive the social
planner can be by setting a
shorter protected period.”

“In general, both an instant
disclosure and a secrecy policy
are suboptimal, although
numerical simulations suggest
that instant disclosure is
particularly inefficient.”

24
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Frei, Shatzmann, Plattner, & Trammell (2009)
Other models

CERT/CC

(Full)
DisclosureBlack market

Publication

Exploit
monitoring

(B) (C)
(E)(A)

Discoverer

Discovery

(D)

SIP

Public

Security Advisory
Disclosure

$$

Criminal

White market

Patch

Vendor

Figure 4: Main processes of the security ecosystem and relation to vulnerability lifecycle events.

• malicious intent for profit, Path (A) or Path (B)
• altruism, Path (C), Path (D)
• recognition or fame, Path (C)
• forcing unresponsive vendors to address a vulner-

ability, Path (C), Path (D), or Path (E)
• curiosity and the challenge of vulnerability analy-

sis, Path (C)
• political motives, Path (A) or Path (B)

It is important to note that the number of third party
software vulnerability discoveries has not declined over
the last decade, as shown in Fig. 1, despite massive ef-
forts of the security and software industry.

6.1.2 Vulnerability Markets

Information about security vulnerabilities can be a
valuable asset. Vulnerability information is traded in
both the underground “black market” and the commer-
cial services “white market”. While a market for vul-
nerabilities has developed, vulnerability commercializa-
tion remains a hotly-debated topic tied to the concept
of vulnerability disclosure. Responsible disclosure fails
to satisfy security researchers who expect to be finan-
cially compensated, while reporting vulnerabilities to
the vendor with the expectation of compensation might
be viewed as extortion [27]. On the other hand, cyber-
criminals not bound by legal or ethical considerations
are willing to invest considerable amounts in suitable
vulnerability information. H. D. Moore3 claims that he
was o↵ered between $60k and $120k for critical vulner-
abilities in Microsoft products as reported in [28, 29,
30]. Researchers that intend to sell a vulnerability face
the possibility that the same vulnerability is discovered,

3H. D. Moore founded the Metasploit project, an open
platform for developing and testing exploit code.

patched, and published independently. This threat of
independent discovery pressures them to sell the vul-
nerability to the quickest bidder instead of the highest
one. Factors that determine the market price of a vul-
nerability are:

• Exclusivity of information. This is the key factor,
once the vulnerability becomes widely known the
value of the information tends to zero.

• Security impact. The higher the security impact,
the higher the value of the vulnerability.

• Product popularity. A vulnerability a↵ecting a pop-
ular product has a higher value.

Black Market.

The black market has developed around the illegal or
malicious use of the vulnerability information. Sellers
are not driven by ethical considerations. The black-
market trade is not openly advertised, and the informa-
tion is used in a way that generally increases the risk
exposure of the public. The lack of trust between sell-
ers and buyers potentially exposes both parties to fraud.
Due to the nature of the market accurate information on
the number and type of trades completed is not system-
atically available. Only specific investigations provide
some insight into the inner workings, e.g. by Syman-
tec’s “Underground Economy Report” [31].

White Market.

Players in the white market o↵er commercial services
and openly advertise their vulnerability handling poli-
cies. Demonstrating and ensuring that buyers and sell-
ers don’t have malicious intent is a major challenge
for the players in the commercial vulnerability market.
White market buyers typically purchase vulnerability

6

Frei, Stefan, et al. "Modeling the security ecosystem-the dynamics of
(in) security." Economics of Information Security and Privacy. Springer

US, 2010. 79-106.

−4
00

−2
00

0
20

0
40

0

2000 2002 2004 2006 2008

Discovery dynamics

disclosure date

da
ys

 s
in

ce
 d

is
cl

os
ur

e

−4
00

−2
00

0
20

0
40

0

2000 2002 2004 2006 2008

Exploit dynamics

disclosure date

da
ys

 s
in

ce
 d

is
cl

os
ur

e

−4
00

−2
00

0
20

0
40

0

2000 2002 2004 2006 2008

Patch dynamics

disclosure date

da
ys

 s
in

ce
 d

is
cl

os
ur

e

Figure 6: Scatter plot of time of vulnerability discovery (left), exploit availability (center), and patch

availability (right) by disclosure date

|V
disco

|, time of exploit availability |V
explo

|, and the time
of patch availability |V

patch

| for every year from 2000 to
2007. The absolute number of vulnerabilities disclosed
in a given year (100%) is visibile in Fig. 1. In the follow-
ing of this section we individually discuss the dynamics
of vulnerability discovery, exploit availability, and patch
availability and describe the data sources used to build
V

disco

, V

explo

, and V

patch

. We examine the vulnerabil-

Vdiscl

Vdisco

Vexplo

Vpatch

|Vdisco| = 2,276
|Vexplo| = 9,243
|Vpatch| = 3,593
|Vexplo ∩ Vpatch| = 743

Figure 7: Number of observed events within all

vulnerabilities disclosed from 2000 to 2007

ity lifecycle by looking at how the time of the events
↵ 2 E = {disco, explo, patch} relate to the respective
disclosure time t

discl

(v) of the vulnerability. For all vul-
nerabilities from 2000 to 2007 and each type of event,
we present a scatter plot, the associated distribution
function, and yearly summaries to evaluate the evolu-
tion and identify trends. These plots are discussed in
detail in the following sections. Normalization of the
vulnerability lifecycle events with respect to the disclo-
sure time is key to evaluate the aggregated dynamics of
thousands of vulnerabilities. We build �t

disco

, �t

explo

,
and �t

patch

as follows:

�t

↵

(v) = t

↵

(v)� t

discl

(v) ↵ 2 E, v 2 V

↵

(4)

Essentially �t

↵

(v) represents the number of days event
↵ 2 E happened before or after the disclosure of vul-
nerability v:

sgn(�t

↵

(v)) =

8
<

:

�1 ↵ occurs before disclosure
0 ↵ occurs at disclosure
1 ↵ occurs after disclosure

�t

disco

is an estimator of the “pre-disclosure” risk and

�t

patch

is an estimator of the “post-disclosure” risk pe-
riod as introduced in Section 5.3.

7.0.3 Scatter plots

We first use scatter plots of �t

↵

to visualize the dis-
tribution and the evolution of events ↵ 2 E over the
last eight years. In the scatter plots of Fig. 6 each point
P

↵

(v) of event ↵ is built according to

P

↵

(v)! (x, y)

⇢
x = t

discl

(v)
y = �t

↵

(v)
↵ 2 E, v 2 V

↵

(5)
In all scatter plots, the x-axis is the calendar day of the
disclosure of vulnerability v. The y-axis represents the
time di↵erence of event ↵ to the disclosure of vulnerabil-
ity v. Events with y > 0 occurred after the disclosure,
events with y < 0 occurred before the disclosure of the
vulnerability v plotted.

7.0.4 Distribution function

To further analyze the dynamics, we plot and discuss
the cumulated distribution P(X  x) of the same data
used to generate the scatter plots. The ecdf

↵

(x) of event
↵ 2 E is

P(X  x) = ecdf

↵

(x)

=
���
�
v 2 V

↵

| �t

↵

(v)  x

 ��� (6)

In Fig. 8, Fig. 9, and Fig. 10 we plot the ecdf

↵

(x) for
discovery, exploit, and patch availability for the range of
x = ±400 days around disclosure. These plots give in-
sight in to the aggregated dynamics of the vulnerability
lifecycle.

7.1 Discovery Dynamics
Usually the time of discovery of a vulnerability is not

publicly known until after its disclosure. Indeed, for
many vulnerabilities the time of discovery will never be
known or reported to the public, depending on the mo-
tives of the discoverer. Cyber-criminals - and most soft-
ware vendors - won’t provide information about their
vulnerability discoveries to the public. However, there
are a few sources from which we can derive the time of
vulnerability discovery. One source is the Open Source
Vulnerability Database (OSVDB); the security bulletins

10

−400 −200 0 200 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Patch ECDF

days since disclosure

ec
df

A

B

●

●

C ●

A ::P((X << 0)) == 6%
B ::P((X ≤≤ 0)) == 43%
C ::P((X ≤≤ 30)) == 72%
Total: 3,593 events

2000 2002 2004 2006

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Evolution of A,B,C

year

ec
df

● ● ●

● ●
● ●

●

A

●

●

●
●

● ●

●

●

B

●

●

● ● ●
●

●

●

C

Figure 10: Empirical cumulated distribution of the patch availability time (left), yearly evolution of

selected points in the ecdf (right)

“high”, “medium”, and “low” risk vulnerabilities repsec-
tively. From these observations, we assume that the risk
class of a vulnerability marginally e↵ects the patch re-
lease performance in the sense that patches for “high”
and“medium”risk vulnerabilities are prioritized against
patches for “low” risk vulnerabilities. If the technolog-
ical complexity of a fix to vulnerability were the dom-
inant parameter to determine patch performance, then
our measurements would lead to the conclusion that
“low” risk vulnerabilities are generally more complex to
fix than “high” or “medium” risk vulnerabilities, which
we consider unlikely. We rather assume that work flow
processes and priorization (and with it incentives) are at
least as important as technical complexity to determine
patch performance.

Note that the discovery of a vulnerability by the ven-
dor itself is also considered as responsible disclosure.
An appropriately motivated employee discovering a vul-
nerability could also choose to o↵er this information to
cyber-criminals instead. The share of zero-day patches
indicates the sum of vulnerability discoveries by the ven-
dor and vulnerabilities reported to the vendor through
the “responsible disclosure” process. Applying these re-
sults to our model of the processes in the security ecosys-
tem, Fig. 4, we conclude that between 6% and 43% of
the vulnerabilites of the analyzed vendors followed the
process Path (D) or Path (E). A detailed analysis of Mi-
crosoft and Apples zero-day patch performance is pub-
lished in [47].

7.4 (In)security Dynamics

7.4.1 The Gap of Insecurity

An interesting aspect of our analysis is the direct com-
parison of the exploit and patch availability distribu-
tions and their trends over the last five years. For
this we analyze the cumulated distribution of �t

patch

(v)
for all vulnerabilities v 2 V

patch

together with the cu-
mulated distribution of �t

explo

(v) for all v 2 V

explo

.
Through vendor Web sites we have systematic access to
all patches published by a given vendor and V

patch

con-

−400 −200 0 200 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Gap of (In)security

days since disclosure

ec
df

●0−day exploit

●0−day patch

743 events

Figure 11: Direct comparison of patch availabil-

ity vs. exploit availability.

tains all patches published by our seven vendors. How-
ever, not all exploits are made available on public ex-
ploit archives, as explained in Section 7.2, so the distri-
bution of �t

explo

(v) is a lower estimate of the exploit
availability. True exploit availability is always faster.
Fig. 11 shows that exploit-availability continuously ex-
ceeds patch-availability for the full range ±400 days
around the day of disclosure. Exploit availability also
consistently exceeds patch availability in every single
year since 2000. This gap, which quantifies the di↵er-
ence between exploit- and patch-availability, is an in-
dicator of the risk exposure and its development over
time. This systematic gap also stresses the importance
for the availability of independent and timely security
information, the role of SIPs explained in Section 6.1.5.

In Fig. 12 we plot distinct points at 0, 10, 30, 90 and
180 days of the cdf of �t

explo

and �t

patch

to visual-
ize their evolution over time. Generally, both exploit
and patch availability were increased over the last five
years. With the exception of 2005, exploit availability

13

tdisco texplo tdiscl tpatch tinstatcreat
t

'texplo 'tpatch

'tdisco 'tinsta
pre-disclosure

risk
post-disclosure

risk
post-patch

risk

creation

information is not public

patch installedpatch availableexploitdiscovery disclosure

information is public

Figure 3: The lifecycle of a vulnerability defined by distinctive events. The exact sequence of events

varies between vulnerabilities.

to turn such code into a working exploit. The time of
exploit is the earliest time an exploit for a vulnerability
is available.

5.2.4 Time of public disclosure (t

discl

)

The purpose of disclosure is to make security infor-
mation available to the public in a standardized, under-
standable format. Disclosure is an important event in
the security ecosystem. In the literature, definitions of
disclosure range from ”made public to wider audience”,
”made public through forums or by vendor”, ”reported
by CERT or Securityfocus”, or ”made public by anyone
before vendor releases a patch” as in [19, 20, 21]. To
normalize this set of definitions, we define the disclo-
sure time as follows:

Definition 2. The time of disclosure t

discl

(v) of
a vulnerability v is the first time a vulnerability is de-
scribed on a channel where the information disclosed
and the information channel publishing the vulnerability
satisfy the following requirements:

1. Free Access: The disclosed vulnerability informa-
tion is available to the public for free.

2. Independence: The vulnerability information is pub-
lished by a widely accepted and independent source.

3. Validation: The vulnerability has undergone anal-
ysis by security experts such that risk rating infor-
mation is included.

These requirements ensure the quality of vulnerabil-
ity information threefold: From the security perspective
only a free and public disclosure of vulnerability infor-
mation can ensure that all interested, a↵ected, or con-
cerned parties get the relevant security information (free
access). Independence is a prerequisite for unbiased and
complete information, while the validation requirement
builds confidence in the quality of the information deliv-
ered. The mere discussion of a potential flaw in a mail-
ing list or vague information from a vendor therefore
does not qualify. We call viable sources of vulnerabil-
ity information Security Information Providers (SIP),
which we discuss in detail in Section 6. Furthermore,
only an information source not dependent on a vendor

or government is unbiased and ensures a fair dissemina-
tion of security critical information2. This implies the
use of several sources to determine the time of disclo-
sure, as many of the organizations that publish security
information are associated with vendors or governments.

In combination, these three requirements ensure that
the disclosure date reflects the first time when trusted,
widely understandable information about a new vulner-
ability is publicly available to everyone concerned. Cor-
relation using CVE identifiers allows to handle dissim-
ilar publication dates from diverse sources: The publi-
cation date of the first SIP (as listed in the Appendix)
reporting a given vulnerability is used as the disclosure
date t

discl

for a vulnerability.

5.2.5 Time of patch availability (t

patch

)

The time of patch availability is the earliest time that
the vendor releases a patch that provides protection
against the exploitation of the vulnerability. Unfortu-
nately, software vendors typically cannot make security
patches available instantly after the discovery of new
vulnerabilities or exploits. While some vendors publish
patches as soon as these are available, others publish
patches on a predefined schedule to ease the planning
of patch installation (e.g. monthly or quarterly sched-
uled release of new patches). We analyze the patch re-
lease performance of various software vendors in detail
in Section 7. In many cases a patch may be available
before public disclosure (e.g. the DNS vulnerabilities of
2008 and service pack roll-ups for new operating sys-
tems [22]). Fixes and patches o↵ered by third parties
are not considered as a patch, we deem the vendor as
the only authoritative source to provide patches for its
software. The complexity of patches varies from simple
configuration fixes to extensive changes in the founda-
tion of the software. Other security mechanisms such as
signatures for intrusion prevention systems or anti-virus
tools are not considered as patches.

5.2.6 Time of patch installation (t

insta

)

Software users can only benefit from the correction of
a vulnerability after a patch is installed on their systems.

2In the following of this paper we use the term vendor to
name the manufacturer of the software for commercial
products, freeware, and open-source software alike

4

25
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

The Wolves of Vuln Street (2015)
Other models

https://hackerone.com/news/the-wolves-of-vuln-street

Moussouris, Siegel, Houghton, & Ellis

26
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Early models were primarily narrative, prescriptive advice
•  Many imply more synchronization than we observe in the wild
•  “We rarely encounter cases with CERT/CC’s preferred ordering” -

Arbaugh, et al. (2000)

Later models start to incorporate
•  social cost
•  participant motives
•  money and markets

But they don’t illuminate how and why coordinated vulnerability
disclosure can fail

What’s missing from prior models?

27
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

© 2015 Carnegie Mellon University © 2015 Carnegie Mellon University

Modeling the Process

Concurrency

28
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Why Create a Concurrency Model?

Vulnerability disclosure is a multiparty, human-centric, concurrent
process
•  Vendors
•  Researchers
•  Coordinators
•  Other stakeholders

•  Service providers
•  Governments
•  Users

Each party represents a complex interaction of many people,
processes, policies, and procedures

29
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Intro to Petri Nets

Used to model distributed processes as a network of nodes and
arcs.
Nodes can be either places (circles), or transitions (boxes).

Arcs (arrows) connect places to transitions and vice versa.
•  Places can't connect to places
•  Transitions can't connect to transitions

All Petri Net diagrams in this presentation were created using WoPeD

http://www.woped.org/

30
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Intro to Petri Nets

Places can hold tokens, which mark the state of a process.

Transitions represent events that change the state of the process.
•  A transition can fire when all the places immediately upstream of it

are occupied by tokens (i.e., when it is enabled).
•  When a transition fires, it consumes tokens from its inputs and places

tokens in its outputs.

31
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

A Simple Model

32
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

A Simple Model

33
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

A Simple Model

34
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

A Simple Model

35
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

A Simple Model

Oh No!

0-Day!

36
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Vendor Model

37
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Vendor Model

38
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Vendor Model

39
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Vendor Model

40
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Vendor Model

41
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Vendor Model

42
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Vendor Model

What if the vendor

 publishes report

before fix?

43
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Vendor + Researcher Model

Researcher

Vendor

44
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Vendor + Researcher Model

45
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Vendor + Researcher Model

46
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Vendor + Researcher Model

47
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Vendor + Researcher Model

48
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Vendor + Researcher Model

49
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Vendor + Researcher Model

50
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Vendor + Researcher Model

51
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Vendor + Researcher Model

52
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Vendor + Researcher Model
Rewind to the

decision to notify

the vendor

53
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Vendor + Researcher Model

54
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Vendor + Researcher Model

55
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Researcher gives up on vendor,
Vendor thought it was fixed

“A combination of mis-communication and lack
of testing led to this situation today, hopefully it

can be a good learning experience.”

56
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Vendor + Researcher Model

57
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Vendor + Researcher Model

58
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Vendor + Researcher Model

59
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Vendor + Researcher Model

60
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Vendor, Researcher, Coordinator

Researcher

Coordinator

Vendor

61
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Vendor, Researcher, Coordinator

62
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Vendor, Researcher, Coordinator

63
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Vendor, Researcher, Coordinator

64
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Vendor, Researcher, Coordinator

65
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Vendor, Researcher, Coordinator

66
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Vendor, Researcher, Coordinator

67
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Vendor, Researcher, Coordinator

68
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Vendor, Researcher, Coordinator

69
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Vendor, Researcher, Coordinator

70
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Vendor, Researcher, Coordinator

71
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Vendor, Researcher, Coordinator, Miscreant

M
is

cr
ea

nt

R
es

ea
rc

he
r

C
oo

rd
in

at
or

Ve
nd

or

CVE &
NVD

But this is still just a single vendor
vulnerability

72
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Multivendor, researcher, coordinator, miscreant
M

is
cr

ea
nt

R
es

ea
rc

he
r

C
oo

rd
in

at
or

Ve
nd

or
 A

CVE & NVD

Ve
nd

or
 B

73
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Multivendor, researcher, coordinator, miscreant

74
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Limits of Concurrency Modeling using Petri Nets

It’s hard to present this stuff in a way that is understandable once
you get so many interactions

State space grows quickly and the model becomes unwieldy

Hard to model history as it evolves
•  E.g., when something different happens based on whether you

passed through some particular node on the way here

Agent-based models seem promising since they can basically
model a state machine per participant and the interactions
between them

75
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Other Ways to Think About It: State Machines

active

wait disengaged

doneunaware publish

stop
work

abandon

learn
about
vul

awaiting
external
event

resume re-engage

disengage

stall

76
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Researcher Researcher Researcher

Vendor Vendor Vendor

Coordinator Coordinator Coordinator

Vendor

Coordinator Researcher

Modeling Helps You Reason About a Bigger
World

active

wait disengaged

active

wait disengaged

active

wait disengaged

Service Provider Service Provider Service Provider Service Provider
active

wait disengaged

77
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

© 2015 Carnegie Mellon University © 2015 Carnegie Mellon University

What we’ve learned so far

Things that break

78
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Have
• Knowledge
• Motives (fortune, fame, altruism, challenge, spite, pride, etc.)
•  Limited attention
• Emotions
• Biases
• Perceptions
• Expectations

All of these affect decisions and actions

Humans
Things that break

See also Katie Moussouris @ RSA 2013 Flash Talk https://youtu.be/T6e70upcfl4

79
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Channel is never established
•  Can’t find vendor contact
•  Contact is nonresponsive

Receiver saturates / Channel
capacity exceeded
•  Usually on recipient end
•  Human-process / cognitive

load

Channel breaks down
•  Synchronization is lost
•  Mismatched expectations
•  One side goes nonresponsive
•  One side goes hostile

Chilling effects of prior behavior
& experience
•  See also iterated prisoner’s

dilemma strategies
• Nice, retaliating, forgiving,

non-envious

Researcher / Vendor Communications
Things that break

https://en.wikipedia.org/wiki/Prisoner's_dilemma

80
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Fuzzing + uniqueness + exploitability analysis = vulplosions

CERT BFF & FOE (fuzzers) highlighted bottlenecks in our own
processes and in vendor vul coordination capacity

One Vendor, Many Vuls
Things that break at scale

81
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

“The more people you tell in advance the higher the likelihood that a leak
will occur. We have seen this happen before, both with OpenSSL and
other projects.”

[Maintaining vendor contacts] “is a significant amount of effort per issue
that is better spent on other things.”

“We have previously used third parties to handle notification for us
including CPNI, oCERT, or CERT/CC, but none were suitable.”

“It's in the best interests of the Internet as a whole to get fixes for
OpenSSL security issues out quickly. OpenSSL embargoes should be
measured in days and weeks, not months or years.”

Many Vendors, One Vul (Type A)
Heartbleed draws attention to OpenSSL disclosure policy

Things that break at scale

https://www.openssl.org/about/secpolicy.html

82
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Find one vul in lots of things, in parallel, as fast as you can

Many Vendors, One Vul (Type B)
CERT Tapioca and the Android SSL MitM avalanche

Things that break at scale

1

10

100

1,000

10,000

100,000

1,000,000

Apps tested Apps
vulnerable

Authors
notified

Email
responses
from app
authors

Emails with fix
details

https://www.rsaconference.com/events/us15/agenda/sessions/1638/how-we-discovered-thousands-of-vulnerable-android

83
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

How do you sustainably notify hundreds of vendors per day for 5
months?

•  Use email contact from app store, no attempt at crypto
•  Frustrated known vendors because we didn’t notify their established

security contact

Does the “45 Day Rule” apply to SSL MitM vuls?

•  In this case, the attacker doesn’t get to pick which apps you use, but
you do. (Advantage is to the defender.)
- Plus, MitM already happening (“Active exploitation” policy clause)

•  Originally no advance warning
- Changed to 7 day advance warning based on vendor feedback

How do you publish 23,000 vulnerability records?

•  Used a Google Drive Spreadsheet, our own publishing system
couldn’t do it easily

Questions We’ve Asked Ourselves
Things that break at scale

84
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

CVE?
Things that break at scale

85
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Many Vendors, Many Vuls
Things that break at scale

86
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

© 2015 Carnegie Mellon University © 2015 Carnegie Mellon University

What we’ve learned so far

Things that work

87
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Clear and findable instructions for reporting vulnerabilities
•  An email address (security@example.com)
•  Web forms, bug report systems are okay too

•  if they allow easy marking of security issues

Acknowledge receipt of reports quickly

Set expectations clearly

Advice for Vendors
Things that work

88
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Maintain open communication channel with vulnerability reporters
•  Occasional “We’re still working on it” notes can keep things from

going sideways

Offer a bug bounty
•  Be careful to incentivize the right things at the right times

Don’t sue (or threaten to sue) researchers
•  Publicity works in counterintuitive ways

Have a “cooperation bias”

Advice for Vendors
Things that work

89
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Attempt to contact the vendor before going public
•  If you can’t find vendor contact or vendor is not responsive,

contact a coordinator (like CERT/CC)

Provide clear and concise reports
•  Steps to reproduce, proof-of-concept code if possible

If you have constraints, articulate them upfront
•  Conference publication deadlines, etc.

Give vendor a final warning before publishing
•  Waiting for the vendor is not always possible

Advice for Researchers
Things that work

90
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Don’t assume the vendor is ignoring you intentionally
•  Tickets get closed by mistake
•  People change jobs
•  Priorities shift
•  Errors happen

Know your rights
https://www.eff.org/issues/coders/vulnerability-reporting-faq

Have a “cooperation bias”

Advice for Researchers
Things that work

© 2015 Carnegie Mellon University

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

© 2015 Carnegie Mellon University

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Conclusion

92
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Average stats (like vul reports/year) hide
the structure of the vul coordination
picture and can mislead you into thinking
that the effort involved is trivial.

It’s not.

You don’t build storm sewers to handle
your average daily rainfall.

You build capacity for the worst flood you
expect over a given timeframe.

And sometimes you’ll be wrong.

Lies, Damned Lies, and Statistics
Conclusion

Photo: Katie Steiner, 2011

93
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Traditional shrink-
wrapped software

Enterprise
customization

Continuous deployment

Mobile apps, App stores

Cloud services (IaaS,
PaaS, SaaS)

Embedded devices and
smart things

There Is No One-Size-Fits-All Disclosure Policy
Conclusion

94
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Multiple vendors needed to fix
•  Internet Infrastructure
•  Third-party libraries

Vendor problems
•  Non-responsive vendors
•  Hostile vendors

•  or fear thereof

Bug bounties may not apply
•  The vendor doesn’t offer one
•  The terms are unacceptable

(or payouts are lame)
•  You’re otherwise ineligible

Desire to remain anonymous
•  Either during disclosure

process or long-term

If you have a vulnerability, if no one else can help…
Conclusion

95
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

…and you can find them…
Conclusion

https://forms.cert.org/VulReport

96
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

…maybe you can coordinate with
Conclusion

97
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

For more information

https://www.eff.org/issues/coders/vulnerability-reporting-faq

http://blog.osvdb.org/2013/08/07/buying-into-the-bias-why-vulnerability-
statistics-suck/

https://www.cert.org/vulnerability-analysis/vul-disclosure.cfm

https://www.cert.org/blogs/certcc/post.cfm?EntryID=202

ISO/IEC 29147 Information technology -- Security techniques --
Vulnerability disclosure [Externally focused]

ISO/IEC 30111 Information technology -- Security techniques --
Vulnerability handling processes [Internally focused]

98
Vulnerability Coordination and
Concurrency
June 4, 2015
© 2015 Carnegie Mellon University

Contact me

Allen D. Householder
Email: adh at cert dot org
Twitter: @__adh__

