
Google Confidential and Proprietary

Multi-Platform ACL
Generation and Testing
Capirca Network ACL Generation
Paul (Tony) Watson

Google Confidential and Proprietary

Google Confidential and Proprietary

permit 6 any any range 33434 33534
permit 6 host 216.239.32.26 eq 49 any established
permit 6 host 216.239.34.26 eq 49 any established
permit 6 host 172.20.0.153 eq 53 any
permit 6 72.14.232.0 0.0.7.255 eq 22 any established
permit 6 any eq 179 host 114.123.56.1
permit 6 2620:0:1000::/40 any eq 22
permit 6 2620:15c::/36 any eq 22
permit 6 any 2001:4860:4000::/37 range 1024 65535 established
permit 6 any 2800:3f0:4000::/37 range 1024 65535 established
.............
.............
.............

Google Confidential and Proprietary

● Dealing with large numbers of varied ACLs across an organization
● Repeated use of changing CIDR blocks and groups of hosts
● Duplication of CIDR blocks and host IPs across multiple filters with

varying platform syntax and formats
● Extremely difficult to review and audit
● Very time consuming
● Prone to human error and typos
● Often requires maintaining identical policies for multiple platforms
● Revision / change control for ACL modifications
● Endless...

Google Confidential and Proprietary

● Using Editor tools to "search & replace" ACL text files
● Memorizing massive numbers of IPs and Netblocks
● Lots and lots of 'remarks' to keep track of what groups of rules do
● Unix tools like 'grep' and 'sed' to find and replace
● Expensive Commercial Packages offered some help, but limited in

capabilities and scope and no ability to customize as needed
● And so on...

Google Confidential and Proprietary

● A common language to describe security policies and a
standardized interconnect between language and platform syntax

● Language should define a policy and be clear and easy to read, but
flexible enough to accommodate most common filtering formats

● Policies should be able to share common objects and definitions
(Hosts, CIDR blocks, Services and groups of nested items)

● Automate as much of the process as possible to reduce the
potential for human error, speed the time to delivery, and reduce
the expertise needed to manage changes

● Easy use of #includes in network filtering policies

● Write once, output many...

Google Confidential and Proprietary

● Need to easily copy policies to a new platform
● Need to apply router edge policy on host machines
● Defense in depth strategies
● Ability to create automated unit tests for ACL policies

○ Ensure XXX traffic is always permitted before changes are pushed
○ Ensure YYY traffic is always blocked before changes are pushed
○ Ensure ZZZ traffic matches on a specific term

● Avoid time-consuming duplication of terms, address sets, or service
groups across multiple devices and platforms (#includes)

● Easy generation of both IPv4 and IPv6 rules from a single policy
● Verify newly modified policies against "recent" traffic scenarios
● Modifiable to support new devices/platforms quickly

Google Confidential and Proprietary

The system was designed
in a modular fashion to
allow us to independently
develop and test the
various components and
allow for reuse in later
tools.

● Naming library
● IP Address library
● Policy library
● Generator libraries

○ Juniper / JuniperSRX
○ Iptables / Speedway
○ Cisco / Cisco ASA
○ PacketFilter
○ Silverpeak
○ others
○ easily extensible...

● Compiler (aclgen.py)
● Unit tests

Google Confidential and Proprietary

Naming

policy.py

ipaddr.pynaming.py

juniper.py
Naming

cisco.py iptables.py, etc...

Generated ACL Filters

Definition Files
*.net *.svc

Policy Files
*.pol

Google Confidential and Proprietary

The following slides provide a brief overview of the various
libraries and components built for the Capirca ACL
generation system.

The system is command line based, but designed such that it will easily
allow overlay of various Web or other GUI interfaces

Release early, release often

The system we use in-house has several key differences:
● Perforce integration for revision control and reviews
● Iptables system with custom deployment and management
● Automated "push" tools for router ACLs
● Separate code-tree for development (most changes ported in/out)

The naming library provides an easy way to lookup addresses
and services based on token names, which we refer to as
definitions. We store definitions in a directory containing an
arbitrary number of files. Files can be used to separate
definitions based on roles or function, but this filename
distinction does not carry into the object usage.

Network definitions files must end in '.net'
Service definitions files must end in '.svc'

Multiple groups can maintain individual .net or .svc files
Definitions can then be easily used by other tools or teams

*creating a naming standard is always encouraged

RFC1918 = 10.0.0.0/8 # non-public
 172.16.0.0/12 # non-public
 192.168.0.0/16 # non-public

INTERNAL = RFC1918

LOOPBACK = 127.0.0.1/32 # loopback
 ::1/128 # ipv6 loopback

NYC_OFFICE = 100.1.1.0/24 # new york office
SFO_OFFICE = 100.2.2.0/24 # san francisco office
CHI_OFFICE = 100.3.3.0/24 # chicago office

OFFICES = NYC_OFFICE SFO_OFFICE
 CHI_OFFICE

WHOIS = 43/udp

SSH = 22/tcp

TELNET = 23/tcp

SMTP = 25/tcp

MAIL_SERVICES = SMTP
 ESMTP
 SMTP_SSL
 POP_SSL
DNS = 53/tcp 53/udp

>>> import naming
>>> definitions = naming.Naming('/my/definitions/directory')
>>> dir(definitions)
['GetIpParents', 'GetNet', 'GetNetAddr', 'GetService', 'GetServiceByProto',
'GetServiceParents', 'ParseNetworkList', 'ParseServiceList', ...]

>>> definitions.GetNet('INTERNAL')
[IPv4('10.0.0.0/8'), IPv4('172.16.0.0/12'), IPv4('192.168.0.0/16')]
*note that this returns NacAddr objects, allowing easy IP address
manipulation.

>>> definitions.GetService('DNS')
['53/tcp', '53/udp']

>>> definitions.GetServiceByProto('DNS','tcp')
['53']

What it provides:
● lightweight, fast IP address manipulation.

To define an IP address object:
 import nacaddr
 ip = nacaddr.IP('10.1.1.0/24', 'text comment', 'token name')

The text comment and token name are optional, and provide
extensions to the base IPaddr library that allow us to carry
comments from the naming definitions to the final output.

Next, lets examine the methods available to the 'ip' object.

ip.version -> numeric value, 4 or 6
ip.text -> value of text comment
ip.token -> value of naming library token
ip.parent_token -> value of naming parent token, if nested
ip.prefixlen -> numeric prefix length of IP object (24)
ip.numhosts -> number of addresses within prefix (256)

ip.ip_ext -> IP address 10.1.1.0
ip.netmask_ext -> netmask of address 255.255.255.0
ip.hostmask_ext -> hostmask of address 0.0.0.255
ip.broadcast_ext -> broadcast address 10.1.1.255
ip.network_ext -> network address 10.1.1.0

* Non _ext methods also exist, that provide integer values.

* Logical changes in this library are pending, stay tuned.

● The policy library is intended to read and interpret high-level
network policy definition files

● Uses the naming library which converts tokens to networks
and services

● Creates an object that is suitable for passing to any of the
output generators

● Each policy definition file contains 1 or more filters, each with
1 or more terms
○ Header sections - defines the filter attributes
○ Term sections - defines the rules to be implemented

● There is no support for NAT at this time
○ You can add support and submit patches

● Policy language has both required and optionally supported
keyword - generators must support required keywords

header {
 comment:: "edge input filter for sample network."
 target:: cisco edge-inbound extended
 target:: speedway INPUT DROP
 target:: juniper edge-inbound
}
term discard-spoofs {
 source-address:: RFC1918
 action:: deny
}
term permit-ipsec-access {
 source-address:: REMOTE_OFFICES
 destination-address:: VPN_HUB
 protocol:: 50
 action:: accept
}
....

$ cat example.acl

remark $Id:$
remark $Date:$
no ip access-list extended edge-inbound
ip access-list extended edge-inbound
remark edge input filter for sample network.

remark discard-spoofs
 deny ip 10.0.0.0 0.255.255.255 any
 deny ip 172.16.0.0 0.15.255.255 any
 deny ip 192.168.0.0 0.0.255.255 any

remark permit-ipsec-access
 permit 50 1.1.1.0 0.0.0.255 host 3.3.3.3
 permit 50 1.1.2.0 0.0.0.255 host 3.3.3.3
 permit 50 2.1.1.0 0.0.0.255 host 3.3.3.3

$ cat example.ipt

*filter
$Id: ./filters/x.ipt $
$Date: 2013/05/27 $
inet
:INPUT DROP
-N I_discard-spoofs
-A I_discard-spoofs -p all -s 10.0.0.0/8 -j DROP
-A I_discard-spoofs -p all -s 172.16.0.0/12 -j DROP
-A I_discard-spoofs -p all -s 192.168.0.0/16 -j DROP
-A INPUT -j I_discard-spoofs
-N I_permit-ipsec-access
-A I_permit-ipsec-access -p 50 -s 100.1.1.0/24 -d 3.3.3.3/32 -m state --state NE
W,ESTABLISHED,RELATED -j ACCEPT
-A I_permit-ipsec-access -p 50 -s 100.2.2.0/24 -d 3.3.3.3/32 -m state --state NE
W,ESTABLISHED,RELATED -j ACCEPT
-A I_permit-ipsec-access -p 50 -s 100.3.3.0/24 -d 3.3.3.3/32 -m state --state NE
W,ESTABLISHED,RELATED -j ACCEPT
-A INPUT -j I_permit-ipsec-access

COMMIT

firewall {
 family inet {
 replace:
 /*
 ...
 ** edge input filter for sample network.
 */
 filter edge-inbound {
 interface-specific;
 term discard-spoofs {
 from {
 source-address {
 10.0.0.0/8; /* non-public */
 172.16.0.0/12; /* non-public */
 192.168.0.0/16; /* non-public */
 }
 }
 then {
 discard;
 }
 }
 term permit-ipsec-access {
 from {
...

...
 source-address {
 1.1.1.0/24; /* Remote Office 1 */
 1.1.2.0/24; /* Remote Office 1 - annex
*/
 2.1.1.0/24; /* Remote Office 2 */
 }
 destination-address {
 3.3.3.3/32; /* vpn concentrator */
 }
 protocol 50;
 }
 then {
 accept;
 }
}}}

There are currently 7+ generator libraries, more are desired
● Juniper, SRX, Cisco, Cisco ASA, Iptables, Speedway,

PacketFilter, SilverPeak

Juniper can generate 3 output formats:
● IPv4, IPv6, Bridge

Cisco can generate 3 output formats:
● extended, standard, object-group (extended with object-

groups)
Iptables can generate 2 output formats:
● IPv4, IPv6 (speedway outputs both in one policy)
● Slightly odd output format - use "speedway" for most uses
● For 'iptables-restore' output format, use "speedway"

● Renders policy objects into Cisco network ACL filters

● Defaults to generating "extended" ACL filters

● Supports several output formats:
○ Extended
○ Standard
○ Object-Group

● Output text begins with "no ip access-list...", then defines
replacement with "ip access-list..."
○ Provides for easy cut-paste deployment

● Each policy term is identified in remark text
● Object-Group is essentially what we've done in the framework

for hosts and services

Defining Cisco output in the Policy "header" section:

For standard ACLs, the format is:

header {
 comment:: "cisco filter header"
 target:: cisco [filter name] {extended|standard|object-group}
}

header {
 comment:: "cisco filter header"
 target:: cisco [number] standard
}

The most fully featured generator, since Google has a long history as a Juniper
partner

Supports most "optional" policy definition keywords:
● destination-prefix:: currently only supported by the juniper generator
● ether-type:: currently on used by juniper generator to specify arp packets
● fragment-offset:: currently only used by juniper generator to specify a fragment

offset of a fragmented packet
● icmp-type:: [echo-reply|echo-request|port-unreachable]
● logging:: specify that this packet should be logged
● loss-priority:: juniper only, specify loss priority
● packet-length:: juniper only, specify packet length
● policer:: juniper only, specify which policer to apply to matching packets
● precedence:: juniper only, specify precendence
● qos:: apply quality of service classification to matching packets
● routing-instance:: juniper only, specify routing instance for matching packets
● source-prefix:: juniper only, specify source-prefix matching
● traffic-type:: juniper only, specify traffic-type

○ [broadcast|multicast|unknown_unicast]

header {
 comment:: "juniper filter header"
 target:: juniper [filter name] {inet|inet6|bridge}
}

Defining Juniper output in the Policy "header" section:

● Used within Google as component of a host based security
system
○ Most people should use "Speedway" instead

● The current output format is not suitable for 'iptables-restore'
○ Each line must be individually passed to /sbin/iptables
○ Internally, Google uses its own specialized loader

● Supports both IPv4 and IPv6 filter generation

● Terms are rendered as jumps in the base filters
○ Optimization algorithm desirable, especially for large filters

● Allows setting of default policy on filters

Defining Iptables output in the Policy "header" section:

Internally, we generate multiple smaller Iptables filters that each
provide a specific function, then chain them together to create
policies.

For example: we have a base policy that is always applied, and
may include one or more additional 'modules' to enable
functionality such as web-services, mail-services, etc.

header {
 comment:: "iptables filter header"
 target:: iptables [INPUT|OUTPUT|FORWARD] {ACCEPT|DROP}
{inet|inet6}
}

Defining Speedway output in the Policy "header" section:

Policy terms allow for interface specification, if desired, to apply
individual terms

"nostate" specifies no state-tracking for packet flows

header {
 comment:: "speedway filter header"
 target:: speedway [INPUT|OUTPUT|FORWARD] {ACCEPT|DROP}
{truncatenames} {nostate} {inet|inet6}

}

Located in parent directory: aclgen.py

Arguments:
 -h, --help (Show this help message and exit)
 -d [definitions]
 -p [policy source file] (mutually exclusive with --poldir)
 -o [output directory]
 --poldir [policy source directory] (mutually exclusive with -p)
 -s, --shade_checking (Enable shade checking)
 -e EXP_INFO, --exp_info=EXP_INFO

(this applies to terms with "expiration::" keyword)

The --poldir option allows you to generate ACLs for an entire directory
of source policies

The following slides provide a brief overview of the various
libraries and components used in our ACL assurance and
validation processes.

These tools are essential parts of the Network Filter
management processes at Google.

We do not want our customers to suffer an outage due to an
error or accident in our ACL management.

* Unfortunately, most of these tools aren't being released at this
time.

● AclCheck library
○ NacParser libary
○ AclTrace library

● Netflow validation
○ aka "snackle"

● Load balancer validation
○ aka "crackle"

● Policy Reader library
● Occlusion detection
● Iptables assurance

○ aka "Pole Position"
● Definate

○ Object defs from
authoritative sources

Once the initial system was built,
it allowed us to easily do things
that were previously very difficult
or impossible.

Regular reports are now
generated advising us of
potential problems or issues.

Other code and projects have
also integrated components of
our system into their own code,
such as naming library &
definitions.

● Having all the various flavors of ACLs in a single policy format
allows us the ability to easily analyze filters

● Allow verification of specific packets against a policy to
determine what matches will occur

● Pass in policy, src, dst, dport, sport, proto and it returns and
aclcheck object

● Methods:
○ ActionMatch(action) - matched terms for this exact action
○ DescribeMatches() - text descriptions of matches
○ ExactMatches() - excludes 'next' actions
○ Matches() - list of matched terms

● AclCheck is the basis for most of our ACL validation tools that
we describe in the following slides

● We cannot tolerate accidental outages due to ACL errors

● "Snackle" compares huge amounts of previous netflow data
against proposed ACL changes

● Alerts us whenever a new ACL is built, but before it is pushed
out, if a possible conflict is detected

● Allows us to detect errors before they might affect our users
○ such as accidentally blocking POP3 to gmail servers

● Obviously, it cannot identify problems that result from "new"
services that did not exist in previous netflow sessions

*This tool is not released at this time

deny->accept
id=1003,64.81.47.74:34609,216.73.86.153:80(global-discard-reserved)(global-accept-transit-customer)
id=1035232,98.171.189.17:52555,209.62.189.11:80(global-discard-reserved)(global-accept-transit-
customer)
id=1036450,66.74.106.59:1989,209.62.176.153:80(global-discard-reserved)(global-accept-transit-
customer)
...

accept->deny
id=1003,64.81.47.74:34609,216.73.86.153:80(global-accept-transit-customer)(global-discard-reserved)
id=1035232,98.171.189.17:52555,209.62.189.11:80(global-accept-transit-customer)(global-discard-
reserved)
id=1036450,66.74.106.59:1989,209.62.176.153:80(global-accept-transit-customer)(global-discard-
reserved)
...

Or

Example Snackle Report Text:

http://www.google.com/url?q=http%3A%2F%2F64.81.47.74%3A34609%2F&sa=D&sntz=1&usg=AFrqEzd-PHXV_Mbl84_1Dhy1GJwzSuZW_Q
http://www.google.com/url?q=http%3A%2F%2F98.171.189.17%3A52555%2F&sa=D&sntz=1&usg=AFrqEzcKkyoZCT96JnQpZ25IaWoKaTB3fg
http://www.google.com/url?q=http%3A%2F%2F66.74.106.59%3A1989%2F&sa=D&sntz=1&usg=AFrqEzfhZrOa0UBq5jpev0c5-SfZOQdEXA
http://www.google.com/url?q=http%3A%2F%2F64.81.47.74%3A34609%2F&sa=D&sntz=1&usg=AFrqEzd-PHXV_Mbl84_1Dhy1GJwzSuZW_Q
http://www.google.com/url?q=http%3A%2F%2F98.171.189.17%3A52555%2F&sa=D&sntz=1&usg=AFrqEzcKkyoZCT96JnQpZ25IaWoKaTB3fg
http://www.google.com/url?q=http%3A%2F%2F66.74.106.59%3A1989%2F&sa=D&sntz=1&usg=AFrqEzfhZrOa0UBq5jpev0c5-SfZOQdEXA

● We cannot tolerate accidental outages due to ACL errors

● "Crackle" parses configurations of our public VIPs to determine
what IPs and services should be available

● Alerts us whenever a new ACL is built, but before it is pushed
out, if a possible conflict is detected

● Allows us to detect errors before they might affect our users
○ such as inadvertently blocking POP3 to Gmail servers

● This has saved us from inadvertent outages on several
occasions

*This tool is not released at this time

In this example, we see
that 25/tcp is being
blocked to a public IP
that was configured to
receive SMTP.

The "details" dropdown
advises us which
service tokens contain
25/tcp, and which
network tokens contain
the public IP.

Then it shows us likely
related ACL terms.

● Adds deployment tracking to Google "Speedway"
deployments

● All deployment report back to central collector at regular
intervals
○ install hash, current hash, role, modules, interface stats

● Collector performs variety of functions on data
○ validates reports
○ stores valid data in database
○ analyzes data for issues
○ reports in real-time though Web UI

■ all hosts
■ per role reports

*This tool is not released at this time

Simple search
box allows us to
find hosts by DNS
or IP matching.

The "Recent
Alerts" (closed)
shows only the
hosts reporting
errors.

The "Recent
Reports" shows
all hosts in the
selected role.

● The policy reader library allows other code to easily examine
policy source files

● The policy library only reads policies for the purpose of
rendering objects for passing to generators

● For some tools, we needed to be able to easily examine the
various filters and terms for programmatically
○ where certain tokens are used
○ where specific options are used
○ etc.

● Policy reader renders simple objects that allow us to do this
● Handy for a variety of tools, such as rendering policies in a

Web UI for example

● ACLs are highly prone to human error
● Manually auditing and reviewing large and complex ACLs is

very difficult and time consuming
● Keeping large blocks of networks in sync between large

numbers of ACLs is time consuming and error prone
● Automating these tasks reduces manual labor, helps eliminate

typos, and helps identify logical errors

Without this system, we would be overwhelmed today due to the
size, complexity and large number of ACLs in the Google
environment.

We have open sourced much of this code to help other
organizations in the management of complex network filtering

We have open-sourced software under the Apache2 license

http://code.google.com/p/capirca/

** Detailed help and documentation is available on the wiki **

If you use it and modify it, please contribute your patches back!

The name, "capirca", was intended to be "caprica" from
BattleStar galactica (the "new world"). I registered the
misspelling, then later noticed the error, but the correct spelling
was already taken.

So, for efficiency(?) we have kept the name Capirca.

