
Adding the ‘E’
to FOSS Cryptographic Data Storage

Definitions

WHAT E?
ENTERPRISE MANAGEMENT!

ADDRESSING
MISCONCEPTIONS

Definitions Motivations

WHY DO WE CARE?

MANDATED BY POLICY

AVOIDING OBSOLESCENCE

NO EXISTING [GOOD] TOOLS

WE CAN FIX THAT

Criteria: a “Good” Tool

CENTRALIZED C / S / R
FLEXIBLE DEPLOYMENT

STAYING POWER

COMMUNITY ACCEPTANCE

Dialogue

PAUSE: Q / A

Implementation Planning

SUPPORTED
CLIENTS

LUKS

eCryptfs

VeraCrypt

dm-crypt

GBDE

GELI

PEFS

softraid

ZFS

Implementation Planning

WHAT TO CONFIGURE
● Enforce encryption on certain mountpoints?

○ If so, how do we back data up before turning on encryption?
● Require certain ciphers or password complexity?
● Do we even want to use a password at all?
● Do we encrypt swap space? How about the bootloader and kernel?
● Do we require TCG compliance?
● Are users local admins of their machines?

○ If so, how easily could they circumvent our configuration
(accidentally or deliberately)?

● Automatic shutdown / reboot to prevent attacks?

Implementation Planning

WHAT TO STORE

ORIGINAL
DATA

CIPHERED
DATAALGORITHM

KEY

Implementation Planning

WHAT TO STORE

KEY

● Hashed password

● Random key, wrapped with a hashed password

● Might include an initialization vector

● Single random key, wrapped multiple times

Implementation Planning

WHAT TO STORE

KEY
METADATA

KEYCREDENTIAL

Implementation Planning

WHAT TO REPORT
● Encrypted mountpoints

● Last known status of encryption

● System inventory (TCG info?)

● List of users

● Indications of tampering

Dialogue

PAUSE: Q / A

Proof of Concept

EMiLE
AN ENTERPRISE MANAGEMENT FACILITY FOR LINUX ENCRYPTION

HTML over HTTP

(S)LD
AP

(S
)

EMiLE Architecture

EMiLE
SERVER

Erlang

Keys and Status

EMiLE
CLIENT
Bash Script Custom API over HTTP(S)

Active
Directory

Keys Only

Standard Tools

IT Team

Common Question

What is Erlang?
Erlang (/ˈɜrlæŋ/ ER-lang) is a general-purpose concurrent, garbage-
collected programming language and runtime system. The
sequential subset of Erlang is a functional language, with eager
evaluation, single assignment, and dynamic typing. It was designed
by Ericsson to support distributed, fault-tolerant, soft-real-time,
non-stop applications. It supports hot swapping, so that code can
be changed without stopping a system.

https://en.wikipedia.org/wiki/Help:IPA_for_English
https://en.wikipedia.org/wiki/Help:IPA_for_English#Key
https://en.wikipedia.org/wiki/Help:IPA_for_English
https://en.wikipedia.org/wiki/Help:IPA_for_English
https://en.wikipedia.org/wiki/Wikipedia:Pronunciation_respelling_key
https://en.wikipedia.org/wiki/Wikipedia:Pronunciation_respelling_key
https://en.wikipedia.org/wiki/Wikipedia:Pronunciation_respelling_key
https://en.wikipedia.org/wiki/General-purpose_programming_language
https://en.wikipedia.org/wiki/General-purpose_programming_language
https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Run_time_system
https://en.wikipedia.org/wiki/Run_time_system
https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
https://en.wikipedia.org/wiki/Run_time_system
https://en.wikipedia.org/wiki/Functional_language
https://en.wikipedia.org/wiki/Functional_language
https://en.wikipedia.org/wiki/Eager_evaluation
https://en.wikipedia.org/wiki/Run_time_system
https://en.wikipedia.org/wiki/Eager_evaluation
https://en.wikipedia.org/wiki/Eager_evaluation
https://en.wikipedia.org/wiki/Single_assignment
https://en.wikipedia.org/wiki/Single_assignment
https://en.wikipedia.org/wiki/Dynamic_typing
https://en.wikipedia.org/wiki/Dynamic_typing
https://en.wikipedia.org/wiki/Eager_evaluation
https://en.wikipedia.org/wiki/Dynamic_typing
https://en.wikipedia.org/wiki/Ericsson
https://en.wikipedia.org/wiki/Ericsson
https://en.wikipedia.org/wiki/Fault-tolerance
https://en.wikipedia.org/wiki/Fault-tolerance
https://en.wikipedia.org/wiki/Soft_real-time
https://en.wikipedia.org/wiki/Soft_real-time
https://en.wikipedia.org/wiki/Dynamic_typing
https://en.wikipedia.org/wiki/Soft_real-time
https://en.wikipedia.org/wiki/Hot_swapping
https://en.wikipedia.org/wiki/Hot_swapping
https://en.wikipedia.org/wiki/Soft_real-time
https://en.wikipedia.org/wiki/Hot_swapping
https://en.wikipedia.org/wiki/Hot_swapping

EMiLE: a GOOD Tool

✔ CENTRALIZED C / S / R

✔ FLEXIBLE DEPLOYMENT

✔ STAYING POWER

✔ COMMUNITY ACCEPTANCE

Decision Time

● OPTION 1: Ignore the issue
○ Cost - VERY LOW: just sit back
○ Benefit - LOW: very easy to do - watch your team’s skill levels fall

● OPTION 2: Implement with an existing tool
○ Cost - LOW: nominal labor hours, maybe a new PTE
○ Benefit - MODERATE: augment skills + in compliance

● OPTION 3: Create a new tool
○ Cost - MODERATE: Approx. 200 - 300 labor hours, maybe a new FTE
○ Benefit - HIGH: Custom solution tailored to your needs

EMiLE: Future Tasks

● Improved Server Authentication

● Implement Client Configuration

● Support More OSes

● More Themes for Web Interface

● Streamline Build and Distribution Process

● Git repo at:
○ https://bitbucket.org/triplephoenix/emile

Conclusion

The Power Is Yours!

